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Abstract

Motivation: Differentially expressed genes are typically identified by analyzing the varia-
tion between replicate measurements. These procedures implicitly assume that there are no
systematic errors in the data, but several sources of systematic error are known. To estimate
the amount of systematic error in bacterial microarray data, we assume that genes in the
same operon have matching expression patterns.

Results: We describe “OpWise,” an empirical Bayes analysis of a linear model that uses this
assumption to estimate significance. In simulations, OpWise corrects for systematic error
and is robust to deviations from its assumptions. In several bacterial data sets, significant
amounts of systematic error are present, and replicate-based approaches overstate the con-
fidence of the changers dramatically, while OpWise does not. Finally, OpWise assigns genes
higher confidence if they are consistent with other genes in the same operon. This allows
more changers can be identified at any given level of significance.

Availability: OpWise is available at http://gtlwebl.1bl.gov/OpWise, including source code
in R and data sets analyzed in this paper.

Contact: ejalm@lbl.gov

Introduction

Microarray measurements of gene expression have become a popular tool for studying bac-
terial physiology, and hundreds of such studies are being conducted each year. Generally,
these studies compare a treatment, either environmental or genetic, to a control condition.
After obtaining raw hybridization intensities by scanning the slides or chips, the next steps
are to normalize the data to remove experimental artefacts and then to identify differentially
expressed genes. The resulting list of differentially expressed genes is typically the input
to more biologically motivated analyses, such as a detailed examination of the differences
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in expression patterns between conditions. The genes in this list are also candidates for
confirmatory experiments to verify the differential expression or to test the role of individual
genes in the stress response.

Because microarray experiments test many genes at once, and because the measurements
contain significant noise, the question of how to define statistical significance is complex. At
one extreme, one can argue that the ranking of genes within the list, with the most significant
changers at the beginning of the list, is what matters, and that the length of the list can
be determined by practical considerations, such as how many genes the analyst has the pa-
tience to examine or the amount of resources that are available for confirmatory experiments
(Lonnstedt and Speed 2001; Smyth et al. 2003). Although we feel that this view contains
some truth, we also note that one would like an estimate of the list’s reliability. Furthermore,
biologists often make statements describing the number of differentially expressed genes in
an experiment. Because the length of these lists reflects arbitrary statistical cutoffs and also
technical issues such as the amount of noise in the measurements, such statements should
be avoided. Nevertheless, they reflect a reasonable desire to know how many changers have
been reliably identified.

Another important reason to assign significance quantitatively, instead of merely ranking
genes, is that it allows the analyst to test specific hypotheses. Given prior knowledge about
the stress, one might surmise that a specific gene or pathway should be up- or down-regulated.
A ranked list of genes may not test this hypothesis in a meaningful way. Ideally, the analyst
would be given a confidence interval for the fold-change of each gene in the pathway.

To assess the reliability of the microarray measurements and to distinguish significant chang-
ers from other genes, statisticians have analyzed the variation between replicate experiments
(Kerr et al. 2000; Ideker et al. 2000; Baldi and Long 2001; Tusher et al. 2001; Lonnstedt
and Speed 2001; Dudoit et al. 2002; Storey and Tibshirani 2003; Smyth 2004). Implicitly,
assessing significance by testing replication error assumes that replication captures all of the
error in the data, and that there are no systematic biases. However, systematic errors have
been observed due to many factors, including cross-hybridization, non-specific hybridization,
dye incorporation bias, intensity-dependent effects, and spatial artefacts (Kerr et al. 2000;
Jin et al. 2001; Kuo et al. 2002; Yang et al. 2002). Although normalization methods at-
tempt to correct for these, normalization may not be entirely successful. More importantly,
most normalization methods do not attempt to correct for all of these sources of error (e.g.,
most methods do not correct for cross-hybridization or for non-specific hybridization). If
significant amounts of systematic bias remain and are not accounted for then the reported
significance will be overstated. To determine if systematic errors are present, additional
information besides the replicates is required.

For bacterial microarray experiments, we use operons to assess the amount of systematic
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error in the data. Bacterial genes are often co-transcribed in multi-gene operons, and genes
in the same operon should, in principle, have the same expression pattern. Although genes in
the same operon are often expressed at different levels due to the varying stability of different
segments of the mRNA, in steady-state situations, this will not affect the ratio in expression
levels between conditions. Because most mRNA half-lives are short (under 10 minutes:
Bernstein et al. 2002; Selinger et al. 2003), the steady state approximation should generally
hold, and expression ratios should be consistent across an operon. Another reason why
expression patterns can vary within an operon is that some operons have internal promoters
or differential regulation of mRNA stability that can lead to differences in expression patterns
(Adhya 2003). In practice, however, genes known to be in the same operon usually have very
similar expression patterns, and expression patterns can be used to predict operons (Sabatti
et al. 2002).

We assume that genes in the same operon have identical expression patterns, and infer that
differences between the expression patterns of genes in the same operon are due to errors,
which may be systematic or not. This assumption is somewhat conservative, because any
true differences in expression patterns between genes in the same operon will be mistaken
for errors, leading to overestimation of the amount of systematic error and conservative
assessments of significance. In practice, however, this effect appears to be slight. Because
the operon structure of most genes has not been experimentally determined, we rely on
operon predictions, which are available for all prokaryotes, along with estimates of their
reliability (Price et al. 2005; Ermolaeva et al. 2001; Moreno-Hagelsieb and Collado-Vides
2002).

Given this assumption about operons, we wish to estimate the amount of systematic bias in
the data. One simple test is to ask how often two genes that are in the same operon have
the same direction of change. However, even if one of the genes is a confident changer, and
even if the operon prediction is highly confident, the measurement for the other gene in the
operon may be noisy. In this case, the second gene will often report a change in the opposite
direction from the first gene because of variation between the replicate measurements, and
not because of systematic bias. Thus, interpreting the external information from operons
requires us to have a model of the replication error.

We extend linear models for microarray data with replicates (Baldi and Long 2001; Lonnst-
edt and Speed 2001; Smyth 2004) to include systematic errors, and present an empirical
Bayes analysis of the overall amount of systematic error and of the significance of each gene.
Because we have observed that even low-confidence changers show a significant amount of
agreement with operons, we do not assume that a minority of genes are changers and that
the rest of the genes do not change (Lonnstedt and Speed 2001; Smyth 2004). Instead, we
will assume that all genes are changing, even if, for most of them, the magnitude of change
is small and the direction of change cannot be determined with confidence. Consequently,
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rather than trying to distinguish the changers from the rest of the genes, we estimate for each
gene the posterior distribution for the gene’s fold-change given the data and the model. This
can be summarized by a confidence interval or by the posterior probability that the gene’s
expression level went up (or down) in response to the treatment. As an example of a more
stringent test, the method also can report the probability that a particular gene increased
by 1.5-fold or more.

To test our method, we conducted simulations and also analyzed several experimental data
sets. In simulations, the method correctly estimates the amount of systematic bias in the
data and gives reasonable p-values even when some of the assumptions of the method are
violated. On real data, we tested the agreement with operons of genes having varying levels
of significance. For both two-color cDNA data and Affymetrix oligonucleotide data, our
method finds significant amounts of systematic error, and gives p-values that are plausible,
with a gradual reduction in agreement with operons as significance decreases. In contrast,
approaches based on replication error, including non-parametric approaches (Tusher et al.
2001; Dudoit et al. 2002; Storey and Tibshirani 2003), often show low agreement with oper-
ons for confident changers (genes with > 99% probability of being true changers). Thus,
replication-based approaches that ignore systematic bias are dramatically overstating signif-
icance.

We can also take advantage of operon structure to identify more changers. Intuitively, if two
or three genes in the same operon all change in the same direction then they are unlikely
to be false positives, but a changer that disagrees with the other genes in the same operon
is suspect. Such reasoning is often used by biologists when examining microarray data.
We derive a statistically sound “operon-wise” p-value, and show that these operon-wise p-
values allow the identification of more changers at any specified level of significance than do
single-gene p-values.

Methods

We present “OpWise,” an empirical Bayes method for estimating the significance of the
changes reported for each gene. The key elements of the method are (i) a linear error
model that includes systematic errors, (ii) an approach for estimating the parameters of the
error model (the hyperparameters), and in particular, a method for inferring the amount of
systematic error from the agreement within operons, (iii) a mathematical solution for the
posterior distribution of a gene’s change in expression given the data for the gene and the
parametrized error model, and (iv) an extension to the method to take other genes in the
same operon into account when estimating the significance of each gene.
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To describe the expression of each gene, we use normalized expression ratios, as these should
be consistent within each operon. In practice, we use log-ratios (base 2) rather than raw
ratios because the log-ratios have a better fit to the normal distribution. Instead of assuming
that only a small fraction of genes are changing, we assume that every gene is changing (but
only a small fraction of them might be measured with high confidence). Furthermore, we
assume that there is some unknown amount of systematic error in the measurement for each
gene, so that errors will remain no matter the number of replicates. Then, given the data for
a gene i, we estimate the posterior distribution for the true log-ratio p;. This distribution
can be summarized with a confidence interval or with the probability P(u; > 0) that a gene’s
expression level went up in the treatment condition. In contrast to p-values from testing a
null hypothesis, where values near zero indicate strong significance, this probability will be
near zero for highly confident down-changers and near one for highly confident up-changers.
For genes whose direction of change cannot be confidently assessed, P(u; > 0) will be near
0.5. Because P(u; > 0) is a posterior p-value and does not test a null hypothesis, it is not
affected by the number of genes being analyzed.

A Linear Model with Systematic Errors

First consider a simple experimental design with direct comparisons, where the samples from
the conditions being compared are hybridized to the same chip. Each gene i has an unknown
true response y;, systematic error €;, and variance between replicates 0. The measurements
x; for gene 7 is assumed to be normally distributed around p; + €;, and can be summarized
by the observed mean m; = 3, z;; /n;, where n; is the number of measurements for gene i,
and the total squared deviance s7 = °;(z;; — m;)?, so that the likelihood of the data for
each gene 17 is given by

Zj(iﬁz‘j — M — Ei)g
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(Eq. 1)
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Another popular experimental design is to compare two types of samples separately to an
external standard, such as genomic DNA or pooled mRNA samples. In these types of
experiments, there are two sets of measured log levels for each gene, and the difference
between them gives the log ratio. We refer to these log levels as x7; and x3;, and summarize
them with counts ny; and ne;, sample means my; and msy;, and total squared deviances s%i
and s%i. We assume that the true variance in measurements x7; and x3; is identical, and that
the unknown systematic bias ¢; affects the difference. We wish to estimate the distribution
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it is straightforward to show that
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which is the same as the form for the direct comparison case except that N; has replaced
n; in the exponential. Intuitively, the loss of a degree of freedom in n; represents the fact
that we do not care about the mean of xy; or x5; but only their difference, and the harmonic
mean in N; is used because in likelihood functions, precision (the inverse of variance) sums.

For both types of experiments, we follow Lonnstedt and Speed (2001) and Smyth (2004)
and use an analytically tractable conjugate prior so that we can solve for the posterior
distribution of u; given the observations and the estimates for the hyperparameters. (The
hyperparameters control the distribution of gene-specific parameters such as p; and o;.)
Specifically, we assume that the distribution of o; is given by an inverse chi-squared or
inverse gamma distribution:

(Eq. 4)

where o and v are the hyperparameters. « is the scale of the chi-squared, and v is the
degrees of freedom.

We assume that the true mean p; and systematic error ¢; are normally distributed with
variance proportionate to 1/6;:

1
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L (Eq. 6)
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where 3 and 7 are additional hyperparameters corresponding to the inverse of the amount
of true variation and systematic error in the data, respectively.

We assume that the true means for the genes are independent, except that genes in the same
operon have the same 6; and p; (but independent bias ¢;). As discussed in the introduction,
genes in the same operon are generally co-regulated, so u; should be similar. The assump-
tion that 6; is identical is required because in our model p; depends on 6;; the empirical
justifiability of this assumption will be discussed in the Results. Because operon predictions
are only 80-90% accurate, we use a method that estimates the probability P(Operon;;) that
two adjacent genes are co-transcribed (Price et al. 2005), and treat the actual state of each
potential operon pair as an unknown random variable. For example, the prediction method
might estimate that two genes have a 90% probability of being in the same operon; in our
model, we use this estimate as the true probability. We use only the likely operon pairs
(those with P(Operon;;) > 0.5).

Solving a Simplified Model without Systematic Errors

We first describe parameter estimation and significance testing in a simplified version of the
above model that lacks systematic errors (that is, all ¢, = 0 and v = 00). In this model, we
need to estimate the prior distribution for 6; (or 0?), which is determined by the scale « and
degrees of freedom v, and the scale of variation for the true log-ratio p; given the variance
o2, which is given by 1/4.

Estimating the Hyperparameters

Although we assume that pu; is normally distributed for all genes, instead of being allowed
to vary for a minority of genes, the variation between replicates in our model is the same
as in Smyth (2004). As discussed by Smyth (2004), the distribution of log s? (the log of the
squared deviances) is more normally distributed than that of s? and hence more suitable for
fitting, and the relationship between the mean and variance of log s? and the data is given

by

2

2

) + log( )

¢i = log 57 — 1



1 Nenes / 1_1
V() = meanf (e — 2 G gl (M)
& expfe+ (U —log( ) (Fq. 7

where () is the digamma function, ¢'() is the trigamma function, € is the mean of the
e;, and the inverse of the trigamma requried to solve for v can be obtained numerically by
Newton iteration. This gives us estimates for v and v, which describe the distribution of the
true variances o? for each gene (see Eq. 4).

We then find the maximum likelihood estimate of 3, which describes the distribution of the
true means p? for each gene (see Eq. 5). The likelihood of the data is given by

];[f(mi,szz) = 1:[/000 do; f (0;) /_o:o dpi f (i) f (ma, 57| i, 07)

][ ’ '<a+5?+m?'Ni.ﬁ> (Eq. 8)
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where for direct comparison experiments, N; = n;. We choose [ to maximize the (loga-
rithm of) this likelihood, using a Newton iteration method (nlm in the R statistics package:
http://www.r-project.org/).

Significance of Individual Genes

Given estimates for the hyperparameters and the observed mean m; and total squared de-
viance s? for a gene 7, the posterior probability distribution for y; is given by

7u+ni 1
f(uilmi, s7) / F(0) £ (113102) f (i, 52165, 12)d0; o< (0 + Bp? + Ni(ps — ma)® + s2)
(Eq. 9)
which is a t distribution with v + n; + 1 degrees of freedom, and
. —m
p= L (Eq. 10)
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where m} and V; are “shrunk” estimates of the mean and of the uncertainty:
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Intuitively, m? appears in the estimate of the variance because m? contains information about
the variance (in our model the expectation of u? is 0/3). Given this posterior distribution
for p;, the probability of any hypothesis can be estimated by using the standard t test. We
use the probability P(u; > 0) as a measure of significance.

Accounting for Systematic Errors

The key advantage of our approach is to use biological knowledge (i.e., operon predictions)
to take systematic errors into account. These systematic errors will not be eliminated by
increasing the number of replicate measurements, but can be estimated by their effect on
the agreement of changes in expression for genes in the same operons. In this section, we
add systematic errors to the above model (¢; > 0, v < 00) and describe how to account for
such bias.

Estimating the Parameters

If we ignore the distinction between systematic error ¢; and true variation pu;, then we can
replace p; with p; = p; + ¢;. The distribution of p is given by

: 1 L) _ LN b
ui~N<0,@> +N<0,%> —N(O, ) <5+7>) —N(O, 9iﬁ'> (Eq. 12)

where

1
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% + % (Eq. 13)

so that the distribution of m; for a model with systematic errors is the same as that for a
model without systematic errors, except that we replace 3 with 3. The distribution of s?
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is not affected by systematic errors. Thus, we can estimate «, v and (' using the bias-free
method described above.

We then find the maximum likelihood estimate of v, which controls the amount of bias, from
the operons, using our assumption that genes in the same operon will have the same values
of p; and of §; = 1/c?. The overall likelihood can be decomposed into terms for individual
genes and pairwise terms for operon pairs:

(@i, 75)
Hf N5 7w (Eq. 14)

We have already taken into account the effect of v on the single-gene likelihoods f(z;) by
introducing ', which is now being held constant, so these terms do not need to be considered.
The pairwise terms are given by

f(z;, ©j|Operong;)
f(z3) - (@)

H @) fj@’ fj; = H (1 — P(Operon;;) + P(Operon;;) ) (Eq. 15)

This expression takes into account the possiblity of errors in the operon predictions. The
inner term can be derived from
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Besides the constant factors, this is a ¢ distribution form for f(z;, €j|Operon;;) divided by ¢
distribution forms for f(z;) and f(z;). We use a Newton iteration method to find the value
of v that maximizes this product of the pairwise likelihood ratios.

Significance of Individual Genes

If we ignore the information from other genes, then the posterior distribution of p; is given
by a t distribution with v 4+ n; + 1 degrees of freedom, where

p o M T m;
-V
N!
/ 7
TN
a+ s? 4+ m? ]\,W
Vi= i (Eq. 19)

(B+ N)(v+n; +1)

which is the same as the formula for the case without systematic bias except that NV; has
been replaced by N/.

Significance taking Operons into Account

Although the method as described so far uses operon predictions to estimate the hyper-
parameters, it uses only the information for each gene when computing p-values. We will
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refer to these as “single-gene” p-values. Here we use information from other genes in the
same operon to improve our estimates of the significance of each gene, giving “operon-wise”
p-values. As we will show in the Results, using this additional information often allows
increased confidence in the measurements.

First, assume that we have two genes ¢ and j that are known to be in the same operon, with
the same (unknown) p;; and 6,; but with differing biases €;, €;. Given measurements for the
two genes, the posterior distribution for p;; is a t distribution with v +n; +n; + 1 degrees
of freedom, and

/
Hij — 15

Vij

t =

, N;mﬁ—N]’m]
m“ = -
1] / /
B+ N/ + N;
2 2 1,2 1,2 (N;m;+N;m;)?
a+si+sj+ Nimi + Njmj — =gramie =

v, = Eq. 20
: (v+ni+n;+ {3+ N+ N)) (. 20)

It is straightforward to extend this formula to three or more genes.

In practice, operon predictions are uncertain, and we need to take this uncertainty into
account in estimating confidence. We use only the adjacent pairs that are predicted to be in
the same operon (those with P(Operon;;) > 0.5), as more distant pairs are less reliable. In
the most complicated case, we have genes 7 and k on either side of our target gene 5 and four
possible cases: singleton transcript j, two-gene operon ij, two-gene operon jk, or three-gene
operon ijk. The posterior distribution of p; is then a mixture of the corresponding four
posterior distributions. However, rather than using the input probabilities P(Operon;;) and
P(Operon;i,) we use the posterior operon probabilities given the data. That is, we use the
microarray data to help estimate the likelihood that a pair of genes are co-transcribed. Using
Bayes’ law, these probabilities are given by

P(Operongj|z;,x5)  P(Operong;)  f(xi, 25|Operony;)
P(=Operon;j|z;,z;)  P(=Operon;;) f(z) - f(z3)

(Eq. 21)

where the formula for the ratio on the right was given in Eq. 17. Using the posterior operon
probabilities gives the rigorously correct posterior distribution for p; (derivation not shown).
Using the posterior operon probabilities also prevents the method from giving a low posterior
distribution to a gene that went up but is in an operon with genes that went down, because
in this situation the posterior P(Operon) will be low.
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Results

We tested on our method on four data sets collected with a variety of measurement platforms
and from several different bacteria. In brief, we first fit our model to each data set, and found
statistically significant systematic bias in each. We used simulations to test how well our
model fit each data set and whether our method was robust to modest deviations from the
underlying assumptions. We then compared the significance estimates from our method to
those from several other methods. Finally, we tested whether operon-wise significance values
were more sensitive than single-gene values.

Data Sets

The four data sets we tested were:

dvSalt30 — Desulfovibrio vulgaris salt shock at 30 minutes (Z. He and J. Zhou, personal
communication). This data was collecting using two-color glass slides with 70-mer probes.
The experiment was an indirect comparison through a genomic control. There were three
biological replications for each condition, measured with 1 slide each, and 2 spots per gene
per slide, for a total of six replicate measurements for each gene and condition.

ecox — A comparison of aerobic and anaerobic log-phase growth in Escherichia coli (Covert
et al. 2004). This data was from Affymetrix oligonucleotide chips with 3 or 4 replicate
hybridizations for each of the two conditions and is available as GEO accession GDS680.

shCold5 — Shewanella oneidensis cold shock at 5 minutes (Z. He and J. Zhou, submitted).
This data was a direct comparison of two-color glass slides using cDNA probes. There were
5 biological replicates with 1 slide each and 2 spots per gene per slide (10 measurements per
gene total), but no dye swap (the same dyes were used for the control and treatment samples
throughout).

shHeath — Shewanella oneidensis heat shock at 5 minutes (Gao et al. 2004). This data was
also a direct comparison of two-color cDNA probes. There were three biological replicates,
with two replicate slides each and 2 spots per gene per slide (12 total measurements per
gene), and with dye swap (Cy3 dye was used for the treatment in half of the slides and for
the control in the other half of the slides).
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Normalization

For the two-color direct comparison data sets (shCold5 and shHeat5), we performed intensity-
dependent and then spatial normalization on each slide. Specifically, we first used a locally
smooth estimator to remove intensity-dependent effects and then subtracted the median
from each sector, similar to recommendations of Dudoit et al. (2002). For the indirect
comparison data set (dvSalt30), we treated the ratio of intensities between the channels
corresponding to cDNA and to genomic DNA as a raw expression level. We first performed
a global normalization for each slide so that the total expression level was the same for each
slide, and then computed the average of the log-expression levels across slides from the two
conditions. This gave us log-ratios between the two conditions to which we could apply
the intensity-dependent and spatial normalization approaches. For all three of these data
sets, we then merged the data from the two spots for each gene, considering them as two
independent sets of replicates. There was little difference between within-slide and between-
slide variance (data not shown). For the Affymetrix data set (ecox), the data we downloaded
had already been normalized with dChip (Li and Wong 2001), so we used the normalized
expression levels provided; to prevent small values of expression level from giving extreme
outliers for log ratios, we added a small constant (5) to the expression levels before taking a
logarithm.

Fit of Model to Data

To see how well the model fit the data, we inferred the hyperparameters for each data
set, used these parameters to create simulated data, and compared the simulated data to
the original data sets. We ran 50 simulations for each of the 4 original data sets. Each
simulation had the same proportion of missing data as the corresponding data set. For
operons, we randomly assigned adjacent genes on the same strand to be in the same operon
or not with the probabilities given by the prediction method, but only if the probability was
0.5 or greater. With these “model” simulations, we were able to test our assumptions about
the distribution of means and variances. To emulate the heavy tails in ecox (see below), we
performed 50 “mixture” simulations where 10% of the genes had much higher variation in
the mean (a much lower () than the other genes. Finally, to test our assumptions that (i)
the true mean and true variance are correlated and (ii) the true variance is correlated within
each operon, for each data set we performed 50 “uncoupled” simulations where the mean was
independent of variance (the mean was normal with a fixed width) and genes in the same
operon had independent variances.

As shown in Figure 1, the inverse gamma distribution provided an excellent fit to the observed
distribution of squared deviance s?. Furthermore, the simulated distribution of observed

i
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means had heavier tails than a normal distribution, due to the wide spread of deviances
(compare “Model” means in Figure 1 to the “Uncoupled” means, which follow the normal
distribution). The distribution of means fit the data fairly well for three of the data sets,
but for the ecox data set, the true distribution had even heavier tails.

To test our assumptions that the variation in the true means depends on the true variances,
we compared the correlations of observed means and squared deviances in the real data to
both the coupled and uncoupled simulations. As shown in Table 1, the observed mean and
squared deviance were much more correlated than in the uncoupled model, except in the
shCold5 data set. Similarly, within each operon the squared deviances were significantly cor-
related. However, the correlations were generally weaker than in the simulations, indicating
deviations from the assumptions.

Finally, our method identified large amounts of systematic bias, similar in magnitude to the
true changes in gene levels and the replication error, in all four data sets (Table 2). Fur-
thermore, the bias was statistically highly significant in all four data sets, as determined by
a maximum likelihood ratio test (see Table 2). This confirms that the problem of system-
atic bias is real. In a later section, we will show that ignoring this bias can lead to large
overstatements of the reliability of measurements for individual genes.

Robustness of Method in Simulations

Because the method uses operons to estimate the overall reliability of the measurements, we
hypothesized that the method would be robust to the modest deviations from its assump-
tions, such as the heavy tails in the distribution of the means in the ecox data set or the
weaker than expected correlation between the means and the variances. We also wanted to
verify that the estimated hyperparameters were accurate enough to give reasonable p-values.
To test these hypotheses, we examined the single-gene estimates of P(u; > 0) for the simu-
lated data (p; is the true log-change for gene 7). For the simulations that followed our model,
we compared these p-values computed with estimated hyperparameters to “ideal” p-values
computed with the true hyperparameters. For the uncoupled simulations, we compared the
p-values to the actual sign of u; for each gene.

When comparing the log odds of the estimated p-values to the log odds of the ideal p-
values, we consistently observed a strongly linear relationship, with correlation coefficients
above 0.9999 (see Figure 2A; logodds(p) = log ﬁ). In other words, the ordering and
shape of the significance values was not affected, but the overall scale of significance could
be. To summarize this linear relationship between the two sets of significance estimates,
we used the slope of the ideal log odds as a function of the estimated log odds. Slopes
less than one indicate that the significance values with the estimated hyperparameters are
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overly conservative, and slopes greater than one indicate that errors in the estimates of the
hyperparameters led to overly aggressive significance values. As shown in Figure 2B, most
simulations had slopes very close to 1.0. In a total of 200 simulations across 4 data sets,
the most extreme aggressive slope was 1.12 (for shHeat5). This corresponds to reporting
P(u > 0) = 0.964 for a gene with a true p-value of 0.95.

For the uncoupled and mixture simulations, which violated the assumptions of our model,
we did not have ideal p-values to compare to, so we instead used logistic regression (glm in
R, http://r-project.org) to determine the slope. Logistic regression identifies the multiplier
for the estimated log odds that best fits the observed pattern of whether p > 0 or not —
see Figure 2C. As shown in Figure 2D, the accuracy of the method was not dramatically
affected by uncoupling the mean from the variance. However, the mixture simulation, which
emulated the heavy tails in the ecox data set, produced slopes around 1.2, with a maximum
of 1.58. This outlier simulation included extreme and biologically unrealistic outliers in true
i (a log-ratio of -44!) that led to a very high estimate of the true variance of the mean and
to 3’ being an order of magnitude too low. Such outliers are not present in our genuine data
sets and need to be removed before using our method. A slope of 1.2, which corresponds to
reporting a p-value of 0.97 when the true p-value is 0.95, is not ideal, but as we will show,
methods that do not account for systematic bias, including non-parametric methods, can
perform dramatically worse.

For all simulations, we also compared the operon-wise p-values to either the ideal or true
significance. These gave similar slopes as the single-gene p-values, but with consistently
smaller deviations from 1.0 (data not shown).

Quality of Significance Estimates

To test the quality of the significance estimates on real data, we compared the confidence
assigned by our method to the extent of agreement with operons. For each data set, we
sorted genes by confidence into eight groups. Although our p-values are single-tailed —
they test only the hypothesis that pu; > 0 — we wanted a two-tailed notion of confidence,
because this is more comparable to other methods. We defined the two-tailed confidence as
C' =2-|p—1/2|. For each gene in each group, we identified other genes predicted to be
in the same operon, and asked whether the two genes changed in the same direction. We
used only adjacent genes, as operon predictions for more distant genes are less confident.
Intuitively, if a group of genes are 99% confident, then 99% of the time, the measurement for
that gene is correct, and it will always have the same sign as other genes in the operon; the
other 1% of the time, there is no information about the gene, and the genes will have the
same sign, by chance, 50% of the time. That is, P(Agree) =C + (1 —-C)/2=(1+C)/2, or
2-P(Agree)—1 = C. We also needed to correct for the possibility that the operon prediction
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is incorrect, which gives 2 - P(Agree) — 1 = C' - P(Operon). Thus, we defined an adjusted
measure of agreement, whose expectation ranges from 0 for data that is all noise to 1 for
perfect data, as Adjusted = (2 - Agree — 1)/P(Operon), where Agree is 1 if true and 0 if
false. This measure corrects for variations in the confidence of operon predictions between
groups of genes — in some data sets, the most confident changers were, on average, in more
confidently predicted operons (data not shown). Finally, even if the measurement for the first
gene in the operon is highly confident and correct, the measurement for the other gene in the
operon may be noisy, and the two genes may not agree. As there is no simple way to correct
for this, we used the simulations described above, and compared the relationship between
confidence and agreement in the real data to that in the simulations. The relationship
between confidence and adjusted agreement with operons was approximately linear in all
data sets (Figure 3) and was largely consistent with simulations (the simulations according
to our model are shown in Figure 3; the other simulations are similar and are shown in
Supplementary Figure 1).

Furthermore, for most groups of genes, including those with modest confidence values, the
adjusted agreement with operons was much larger than zero. This suggests that the expres-
sion levels of all genes in these experiments were in fact changing, even if many individual
genes could not be measured with confidence. In all four data sets, when we grouped genes
into eight sets with similar confidence values, the top six of eight confidence groups had
significantly more operon pairs that agreed with microarray data than not (all p < 0.05,
binomial test). This confirmed our assumption that all genes are changers.

Significance Estimates Are Unreasonable Unless Bias is Accounted For

Figure 3 also shows the relationship between confidence and operons for our model with the
bias removed (using 7 = oo). Naturally, the confidence estimates from the model without
bias were higher. In the shHeath and shCold5 data sets, the bias-free estimates of confidence
were much too high: the highest and second-highest confidence groups both had confidence
levels very near one, but the second-highest group had a much lower level of agreement with
operons than the highest group. This also rules out one alternative explanation for why
we detected significant bias in these data sets, which is that microarray data lacks bias but
the operon predictions were flawed or systematically overconfident. In the latter case, the
agreement with operons should have been lower for changers at every level of confidence,
including the most confident changers. For dvSalt30, the bias-free confidence estimates
appear to be more modestly over-confident, while for ecox, the difference between models
with and without bias is small.

Finally, we compared the confidence estimates from our model to those from a popular non-
parametric method, namely significance analysis of microarrays, or SAM (Tusher et al. 2001).



18

For each gene, SAM tests the null hypothesis that the gene’s expression level is identical in
the two conditions. To do this, SAM uses a modified ¢ statistic with a pseudovariance term
in the denominator. However, rather than using a t test, SAM estimates the null distribution
for the modified ¢ statistic by performing random permutations of the data. For a direct
comparison experiment, this involves randomly flipping the signs of the replicates, while for
an indirect comparison, it involves randomly reassigning replicates between conditions. Given
p-values from each gene from these permutation tests, SAM then uses the proportion of genes
with high p-values to estimate the proportion of genes that are non-changers, and hence the
proportion of genes that are true changers (similar to Storey and Tibshirani (2003)). Finally,
given this proportion, it corrects for multiple testing and estimates the false discovery rate
(FDR). For each gene, the FDR is an estimate of the proportion of false positives among genes
that are at that genes’ significance level or more significant. To compare these significance
values to the confidence levels from our method in Figure 3, we needed the proportion of
false positives within each group, also known as the local false discovery rate — the confidence
is 1 minus the local FDR. For the most significant group, the local FDR is simply the FDR
for the least significant member of the group. For the less significant groups, the number of
false positives can be estimated from the FDR by subtracting the false positives expected
for the more significant groups (similar to Aubert et al. (2004)).

As shown in Figure 3, for the shHeath and shCold5 data sets, SAM is far too confident,
and similar to the parametric model without bias. Indeed, for the shHeath data set, SAM
assigned an FDR of under 10™* to 78% of all genes! (This is why there are only two
groups for SAM shown in the plot — most of the values were identical.) This behavior
was far worse an overstatement of p-values that we ever observed in the simulations that
violated our distributional assumptions (Figure 2D). For the dvSalt30 data set, which has a
moderate amount of bias, SAM was also more confident than our model, at least for the more
significant changers (the three right-most groups containing the top 1,300 genes). The SAM
curve was also noticeably below the simulation curve, suggesting that it was (moderately)
over-confident. Finally, for ecox, which has little bias and a heavy-tailed distribution, SAM
performed well (see top right of curve), while our method was perhaps slightly over-confident.
(The odd behavior of the left side of the SAM curve reflects noise inherent in our method
of calculating the local FDR.) Overall, we concluded that the bias we inferred in these data
sets was not somehow due to violations of our distributional assumptions, and that the bias
can be a much larger source of over-confidence than violations of distributional assumptions.

Increased Sensitivity of Operon-wise Significance Estimates

We hypothesized that when genes in operons have consistent measurements, higher confi-
dence can be assigned to those measurements. As described in the Methods, we calculated
“operon-wise” p-values that, for each gene, take into account the data for other genes in
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the same operon (if such genes exist; otherwise the operon-wise and single-gene p-values
are identical). To test whether operon-wise p-values were more powerful than single-gene
p-values, we compared the distributions of the operon-wise significance values to that of the
single-gene significance values. Significance was defined as 1 — C. As shown in Figure 4, the
operon-wise significance estimates are much more confident in each of the data sets, and at
a significance cutoff of 0.01, 2-10 times more genes can be identified.

Discussion

We have described how operons can be used to detect systematic errors in measurements of
prokaryotic gene expression patterns, to account for the bias when estimating significance,
and to increase the confidence of measurements that are consistent within an operon. The
method relies on the assumption that genes in the same operon have matching expression
profiles. Although this assumption is only approximately correct, it is effective in practice,
and is strongly preferable to ignoring the presence of systematic errors in the data. The
method also relies on assumptions about the distributions of the true means and variances
of the data. These assumptions are not entirely accurate, but without such assumptions, it
would not be possible to distinguish low agreement within operons due to replication noise
from that due to systematic bias. In simulations, the method was robust to the observed
deviations from the assumptions.

In four data sets, the method identified significant and sometimes large amounts of systematic
error. If this bias is not taken into account, as is generally the case with current approaches,
then the statistical analysis will be far too aggressive. Our results indicate that the bias is not
an artefact arising from errors in operon predictions or from our distributional assumptions.
When using methods that did not correct for bias, for the three data sets that had large
amounts of bias, we observed excellent agreement with operons for the most significant
genes, and much less agreement for genes that were only slightly less significant if bias
was not taken into account (e.g., 99% confident instead of 99.9% confident). This strongly
suggests the methods that did not correct for bias were over-confident and that the bias is
genuine. For the fourth data set, the bias was small, and it is possible that the rare cases
where genes within the same operon truly have different expression patterns (Adhya 2003)
might be responsible for the apparent bias. It is also conceivable that the method could
underestimate bias if the systematic errors were somehow correlated for genes in the same
operon. For example, as genes in the same operon are in the same mRNA molecules, any
bias due to the RNA extraction step might not be detected.

Where does the bias come from?” Many potential sources of biases are known, including
intensity-dependent effects, spatial biases, dye incorporation biases, and cross-hybridization
or non-specific hybridization. The normalization methods we used should correct for the



20

intensity and spatial effects, and we would also expect that the effects remaining after nor-
malization might vary between replicates and hence might not be systematic. The shColdb
data set included a dye swap, which should correct for dye biases, but this set still had very
high bias. Because the shCold5 and shHeat5 data sets, which showed the most bias, were
measured only 5 minutes after the stress was applied, we considered the possibility that the
mRNA levels were far from steady-state and that some operons would have poor agreement
because of differential mnMRNA decay. However, later time points from these same experiments
showed similar amounts of bias (data not shown).

Another source of apparent bias might be correlation between the replicates. That is, if the
replicate measurements are not truly independent and some of the replicates are correlated
then the noise of the averaged replicate will be larger than expected. For example, the
shHeat5 data set had a total of 12 measurements per gene (3 biological samples times two
slides per sample with dyes reversed times two spots per gene on each slide). In this data set,
the replicate measurements with the same dye assignment were more correlated than those
with reversed dyes. To test the pattern of bias with fully independent replicates, we created
two subsets of the data. First, we used only the first spot for each gene on the slides and
a single biological replicate, leaving 2 replicates with different dye assignments. Second, we
used only a single dye assignment and only the 1st spot per slide, leaving 3 replicates from
different samples. In both cases, we still observed large amounts of bias (data not shown).
We also verified that our method was not sensitive to correlations between replicates. We
created an exact duplicate of each replicate, and this “doubled” data set gave significance
values very similar to the original data set (results not shown).

The data set without major bias (ecox) was collected using Affymetrix gene chips, which
use multiple probes per gene, and was normalized with a method that attempts to iden-
tify “bad” probes and remove them from the data (Li and Wong 2001). We speculate that
cross-hybridization or non-specific hybridization can create problems for some probes, and
that when multiple probes are used, this bias can be removed. Such biases have been
observed directly. For example, after hybridizing identical samples to Affymetrix and two-
color microarrays, Kuo et al. (2002) inferred both kinds of bias from discrepancies between
the measurements. A correlation of bias with GC content was attributed to non-specific
hybridization, while a correlation of bias with the existence of paralogs was attributed to
cross-hybridization. We tested for these sources of bias in the shHeat5 data set, using agree-
ment within operons as a crude measure of bias. However, we did not see any relationship
between paralogs and agreement. We did see a significant (albeit weak) tendency for probes
with lower GC content to show stronger agreement, but as the genes with low-GC probes
also showed larger changes in expression, this need not reflect bias. Additional experimental
data will be required to clarify the source of bias and to estimate its magnitude more directly.

Irrespective of bias and for all four data sets, the operon-wise method identified many more
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genes at any desired level of significance than the single-gene method. Although we only
tested the operon-wise approach with one method for assessing significance, in principle,
operon-wise p-values can be computed using single-gene p-values from any method. However,
operon-wise p-values cannot necessarily be used in the same way as single-gene p-values. For
example, it is common practice to rank genes by their significance. Lonnstedt and Speed
(2001) go so far as to provide a ranking without an absolute significance scale. The operon-
wise p-values may not be suitable for ranking, as genes in consistent operons that did not
show large changers can be ranked highly, and these could well be indirect effects that
are of less biological interest. To produce a ranked list of genes, we recommend either (i)
setting a confidence threshold and then ranking the genes above that confidence level by
their fold-change or (ii) testing a more stringent hypothesis than whether the gene changed
in the measured direction, such as whether the gene’s expression changed by 1.5-fold or
more. Another attractive possibility is to rank operons rather than individual genes, but
the confidence values will still be higher for larger operons. In any case, the main benefit
of the present work is not for ranking or other broad exploratory analyses but in the ability
to obtain plausible p-values for specific hypotheses of the form “was gene X or operon Y
up-regulated in this experiment?”

As microarray technology becomes less expensive, experiment designs with high amounts
of replication are becoming common. We observed that the systematic error can be com-
parable to or even larger than the variation betwen replicates (v < 1, as in shHeath and
shCold5). If systematic error is large relative to replication error, then performing many
replicate measurements may not be cost-effective. If these systematic errors are due to
probe-specific effects, as seems likely, then using several different probes for each gene might
be preferable. Alternatively, control experiments to measure non-specific hybridization and
cross-hybridization might be possible.

Finally, although the method we describe here requires operons and is only applicable to
prokaryotic data, a similar approach might be useful for eukaryotes as well. The key require-
ment is for prior knowledge of pairs of genes that have matching expression patterns. These
could perhaps be identified among pairs that are known to be both functionally related and
co-expressed (in data other than that being analyzed). For example, in yeast, many stable
complexes are known, large amounts of expression data are available, and genes that code
for stable complexes are often strongly co-expressed (Jansen et al. 2002). And the worm C.
elegans, which is a model system for studying development, has “operons” of a sort, but the
extent of co-expression is less clear than for prokaryotic operons (Lercher et al. 2003).
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Table 1: Relationship between means and variances in the data and in simula-
tions. rg indicates a Spearman (ranked) correlation coefficient, and subscripts 1 and 2 indi-
cate pairs of adjacent genes that are predicted to be in the same operon (P(Operon;;) > 0.5).

Data Set rs(|ml,s?) | rs(mi,mz) | rs(s?,s3)
dvSalt30
Actual 0.209 0.405 0.137
Model 0.268 0.434 0.536
Uncoupled 0.123 0.469 -0.000
ecox
Actual 0.284 0.655 0.412
Model 0.339 0.708 0.554
Uncoupled 0.052 0.785 0.003
Mixture 0.313 0.545 0.547
shHeath
Actual 0.235 0.727 0.169
Model 0.262 0.684 0.499
Uncoupled 0.065 0.684 0.002
shCold5
Actual 0.156 0.403 0.200
Model 0.328 0.465 0.573
Uncoupled 0.175 0.423 0.002
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Table 2: Systematic bias in four biological data sets. The typical size of the bias in
the apparent log,-ratio is the square root of its variance, or ,/E(ﬁ), where E(1/0;) = 5.
The bias over the signal is the square root of the ratio of variances (1/3/7). The bias over
the replication error is also the square root of the ratio of variances (M), and considers
a single measurement (is not divided by the number of replicates). To show that the bias
is statistically significant, we compared the likelihood ratio of the best-fitting model given
systematic error to that without (with 7 = oco; see Eq. 15). Because we are testing whether
v lies at a boundary, in the absence of bias the distribution of 2 - log(ratio) approximates
a 50:50 mixture of two chi-squared distributions with 0 and 1 degrees of freedom (Self and
Liang 1987).

dvSalt30 ecox shHeat5 | shColdb
Typical bias 0.25 0.12 0.37 0.88
Bias / signal (%) 70.4% 19.6% 49.9% 86.9%
Bias / replication error (%) | 72.7% 35.8% 143.1% 199.1%
Significance of bias
Likelihood ratio 1.74e+02 | 9.38e+4-00 | 1.48e+03 | 1.81e+4-03
p-value <1077 <107 < 107646 | < 10786
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Figure 1: Distributions, in actual and simulated data, for observed means (left)
and squared total deviances (right). The leftmost and rightmost bins include all more
extreme values. Note the log y-axis for the means.
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Figure 2: Accuracy of p-values in simulations. (A) For a simulation matching the error
model, the solid line shows the estimated log odds for each gene (log %) as a function
of the “ideal” log odds based on the true values of the hyperparameters. The dashed line
shows x = y. A linear regression with the intercept fixed at zero gives a slope of 1.09. (B)
The distribution of these slopes across 50 simulations for each data set’s hyperparameters.
The boxes show the first and third quartiles and the medians, the whiskers show the most
extreme point within 1.5 times the inter-quartile range of the box, and the points indicate
outliers. (C) For an “uncoupled” simulation where means and variances were independent,
we sorted the genes by their estimated log odds into 10 bins of equal size. For each bin, a
point shows the true log odds (from the number of genes with p; > 0 and u; < 0) and the
average of the estimated log odds. Logistic regression gave a slope of 0.97 (shown with a
solid line). (D) The distribution of these slopes from 50 uncoupled simulations for each data
set and from the “mixture” simulation for the ecox data set.
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Figure 3: Single-gene significance and agreement with operons. For each data
set and for three methods of assessing significance (our standard model, our model without
bias, and significance analysis of microarrays), we divided the changers into eight groups of
genes with different levels of confidence. The z axis shows the average confidence within
each group of genes. For each group, the y axis shows the adjusted agreement with operon
pairs (the adjusted proportion of pairs which have the same sign of log-ratio), which ranges
from 0 for random pairs to 1 for perfect measurements. We also show average results from
simulations for each data set (simulated and analyzed with our standard model). The error
bars give the 95% confidence interval (from a ¢ test) for the mean agreement for each group
from the “standard” (bias-adjusted) significance values.
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Figure 4: Sensitivity of single-gene and operon-wise methods. For each data set,
we show the cumulative number of changers identified at varing levels of significance. Note
the log scales. The horizontal line is at 0.01. Genes that are not in operons are included in
the operon-wise results.
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Supplementary Figure 1: Single-gene significance and agreement with operons.
As in Figure 3, we divided the changers into eight groups of genes with different levels of
confidence, and compare the average confidence within each group to the adjusted agreement
with operon pairs. Here we compare the actual data set to additional “uncoupled” and (for

ecox) “mixture” simulations.



