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Abstract

As DNA sequencing accelerates, gene families are growing rapidly, but stan-
dard methods for inferring phylogenies become computationally demanding for
alignments of thousands of sequences. We present FastTree, a method for con-
structing large phylogenies and for estimating their reliability. Instead of stor-
ing a distance matrix, FastTree stores sequence profiles of internal nodes in
the tree. FastTree uses these profiles to implement neighbor-joining, and uses
heuristics to quickly identify candidate joins. FastTree then refines the topol-
ogy with nearest-neighbor interchanges according to the minimum-evolution
criterion. Compared to using a distance matrix, FastTree reduces the memory
required from O(N2) to O(NLa + N

√
N) and reduces the computation time

from O(N2L) to O(N
√

N log(N)La), where N is the number of sequences, L is
the width of the alignment, and a is the size of the alphabet. To estimate the
tree’s reliability, FastTree uses local bootstrapping, which gives another 100-fold
speedup over distance matrix approaches. FastTree constructed trees, includ-
ing support values, for biological alignments with 39,092 or 158,022 distinct
sequences in less time than it takes to compute a distance matrix and in a frac-
tion of the space. Traditional neighbor joining with 100 bootstraps would be
10,000 times slower and would require 50 gigabytes of memory. In simulations,
FastTree is slightly more accurate than other minimum-evolution methods such
as neighbor joining, BIONJ, or FastME, and on genuine alignments, FastTree
produces topologies with higher likelihoods. FastTree is available at http://
microbesonline.org/fasttree.

Introduction

Inferring phylogenies from biological sequences is the fundamental method in
molecular evolution, and has many applications in taxonomy and for predicting
structure and biological function. In general, sequences are identified as homol-
ogous and aligned, and then a phylogeny is inferred. Large alignments can be
constructed efficiently, in time linear in the number of sequences, by aligning
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the sequences to a profile instead of to each other, as with position-specific blast
or hmmalign (Schaffer et al. (2001); http://hmmer.janelia.org/).

Given an alignment, neighbor joining and related minimum-evolution meth-
ods are the fastest and most scalable approaches for inferring phylogenies (Saitou
and Nei, 1987; Studier and Keppler, 1988; Desper and Gascuel, 2002). All of
these methods rely on a distance matrix that stores an estimate of the evo-
lutionary distance between each pair of sequences. They then search for the
topology that minimizes the total length of the tree, using a local estimate of
the length of each branch (Gascuel and Steel, 2006). Computing an entry in the
distance matrix requires comparing the characters at each position in the align-
ment and hence requires O(L) time, where L is the number of positions. Thus,
the distance matrix takes O(N2L) time to compute, where N is the number of
sequences, and O(N2) space to store. The standard neighbor-joining algorithm
requires a further O(N3) time to build the tree, but there are implementations
that take O(N2) or O(N2 log N) time, either by using heuristics to speed the
search (Elias and Lagergren, 2005; Evans et al., 2006) or by using additional
O(N2) memory (Simonsen et al., 2008; Zaslavsky and Tatusova, 2008). There
are also other minimum-evolution methods that take only O(N2) time, such as
FastME (Desper and Gascuel, 2002). With any of these optimized methods, the
O(N2L) time to compute the distance matrix dominates the time.

As DNA sequencing accelerates, the memory and CPU requirements of the
distance matrix approach are becoming prohibitive. Many families already con-
tain 100,000-200,000 members. For example, the MicrobesOnline database,
which provides phylogenies for all protein families from prokaryotic genomes, al-
ready contains 100 protein families that contain over 100,000 distinct sequences
(Alm et al. (2005); http://www.microbesonline.org/). Similarly, an alignment
of full-length 16S ribosomal RNAs contains over 160,000 distinct sequences (De-
Santis et al. (2006); http://greengenes.lbl.gov). The distance matrix for fami-
lies with 100,000-200,000 members requires 20-80 gigabytes (GB) of memory to
store (a 4-byte floating point value for each of N(N − 1)/2 pairs). Although
computers with this much memory are available, the typical node in a compute
cluster has an order of magnitude less memory. Furthermore, DNA sequencing
technology is improving rapidly, and the distance matrix’s size scales as the
square of the family’s size, so we expect these problems to become much more
severe. Finally, most of the methods to construct a tree from a distance ma-
trix in O(N2) time, such as FastME and the exact O(N2) implementations of
neighbor joining, require additional O(N2) memory.

Whatever the method used, inferred phylogenies often contain errors, and
so it is important to estimate the reliability of the result (Nei et al., 1998). The
standard method to estimate reliability is to use the bootstrap: to resample
the columns of the alignment, to rerun the method 100-1,000 times, to compare
the resulting trees to each other or to the tree inferred from the full alignment,
and to count the number of times that each split occurs in the resulting trees
(Felsenstein, 1985). (A split is the two sets of leaves on either side of an internal
edge.) Unfortunately, bootstrapping is a minimum of 100 times slower than the
underlying phylogenetic inference, and neighbor joining with bootstrap takes
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days of CPU time for just 10,000 sequences.
Although building phylogenetic trees for large gene families is challenging,

we argue that it is important to do so and not just to build trees for small sets
of selected homologs. First, building smaller trees means not considering all of
the data, which reduces the accuracy of the resulting tree (Zwickl and Hillis,
2002). Second, not considering all taxa can change the biological interpreta-
tion of the result. This problem is particularly severe in prokaryotes: because
horizontal gene transfer is pervasive, it is difficult to know which homologs
are relevant without building a tree. Third, phylogenetic trees have many ap-
plications, most obviously in taxonomy, but also in predicting gene function,
identifying functional residues, and classifying environmental DNA sequences
(Eisen, 1998; Engelhardt et al., 2005; Lichtarge et al., 2003; von Mering et al.,
2007). For these applications, it is preferable to analyze all of the sequences.
Finally, for web sites that support interactive use of phylogenetic trees, it is de-
sirable to compute trees for all of the genes beforehand (Li et al. (2006); http://
www.microbesonline.org/). One alternative to building large gene trees that we
have explored is to identify orthology groups and to build smaller trees for these
subfamilies, without building larger trees (Dehal and Boore, 2006). However,
we doubt whether this approach will scale to thousands of genomes because the
time to identify orthology groups is quadratic in the number of genomes.

Our Approach

We present FastTree, which uses four ideas to reduce the space and time com-
plexity of inferring a phylogeny from an alignment (Figure 1). First, FastTree
stores profiles for the internal nodes in the tree instead of storing a distance ma-
trix. Each profile includes a frequency vector for each position, and the profile of
an internal node is the weighted average of its childrens’ profiles. FastTree uses
these profiles to compute the distances between internal nodes. For example,
in traditional neighbor joining, when one joins two nodes A and B to make a
new internal node AB, one computes and stores the distances of the new node
to other nodes d(AB,C) = (d(A,C) + d(B,C)− d(A,B))/2. In BIONJ, a pop-
ular refinement of neighbor-joining, the joins are weighted, so that d(AB,C) =
λ(d(A,B)−d(A,AB))+(1−λ)(d(A,B)−d(B,AB)), where λ is the weight (Gas-
cuel, 1997). FastTree instead stores a profile P (AB) = λP (A)+(1−λ)P (B), as
well as an “up-distance” to account for subtracting the d(A,AB) and d(B,AB)
terms. For example, if we join two leaves i and j, and i has an A at a posi-
tion and j has a G, then the profile of ij at that position will be 50% A and
50% G (and 0% for other characters). Given the profiles of AB and C and
the up-distances, FastTree can compute the distance d(AB,C) as needed. The
profiles require a total of O(NLa) space, where a is the size of the alphabet (20
for protein sequences and 4 for nucleotide sequences), instead of O(N2) space
for the distance matrix. However, the time required for neighbor-joining with
exhaustive search rises from O(N3) to O(N3La), because every distance has to
be recomputed on demand in O(La) time.

Second, FastTree uses a combination of previously published heuristics (Elias
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and Lagergren, 2005; Evans et al., 2006) and a new “top hits” heuristic to reduce
the number of joins considered. Whereas traditional neighbor joining considers
O(N3) possible joins, and optimized variants have considered O(N2) possible
joins (the size of the distance matrix), FastTree considers O(N

√
N log N) possi-

ble joins. Thus, in theory, FastTree takes O(N
√

N log(N)La) time. In practice,
FastTree is faster than computing the distance matrix. These heuristics require
additional O(N

√
N) memory, raising the total storage requirement for FastTree

to O(NLa + N
√

N), which is still much less than O(N2).
Third, FastTree refines the initial topology with nearest-neighbor inter-

changes (NNIs). Given an unrooted tree ((A,B),(C,D)), where A, B, C, and D
may be sub-trees rather than individual sequences, FastTree compares the pro-
files of A, B, C, and D, and determines whether alternate topologies ((A,C),(B,D))
or ((A,D),(B,C)) would reduce the length of the tree. Nearest-neighbor in-
terchanges have previously been used in a minimum-evolution framework in
FastME, which uses a distance matrix (Desper and Gascuel, 2002). FastTree’s
NNIs take O(N log(N)La) additional time and O(NLa) additional space. In
practice, the NNIs take much less time that computing the initial topology, and
they improve the quality of the tree.

Fourth, FastTree computes a local bootstrap value for each internal split
((A,B),(C,D)) by examining the profiles of A, B, C, and D. The local bootstrap
has been used for maximum-likelihood trees (Kishino et al., 1990) but cannot
be used with distance matrix methods. Computing the local bootstrap takes
O(bNLa) time, where b is the number of bootstrap samples. Even with 1,000
samples, this takes less than a minute for an alignment of over 8,000 protein
sequences and 394 columns. Thus, local bootstrap gives FastTree an additional
100-fold speed-up over distance matrix methods, in which the entire computa-
tion must be repeated for each sample.

Below, we describe FastTree in more detail. Then, we show that in realistic
simulations, FastTree is slightly more accurate than other minimum-evolution
methods such as neighbor joining, BIONJ, or FastME. Furthermore, we show
that the local bootstrap is a good indicator of whether each split in the in-
ferred topology is correct. On genuine alignments, FastTree topologies tend to
have higher likelihoods than topologies from other minimum-evolution meth-
ods, which also suggests that FastTree gives higher-quality results. For both
simulated and genuine alignments, FastTree’s heuristics do not lead to any mea-
surable reduction in quality. Finally, we show that for large families, FastTree
requires less CPU time and far less memory than computing and storing a dis-
tance matrix. Thus, we believe that FastTree is the first practical method for
computing accurate phylogenies, including support values, for alignments with
tens or hundreds of thousands of sequences.
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Materials and Methods

FastTree

FastTree’s Distance Measure

Whereas traditional distance matrix methods take the distance matrix as input,
FastTree computes the distances itself. For nucleotide sequences, FastTree uses
Jukes-Cantor distance d = − 3

4
log(1− 4

3
p), where p is the proportion of non-gap

positions that differ.
For protein sequences, FastTree estimates distances by using the BLOSUM45

amino acid similarity matrix (Henikoff and Henikoff, 1992) and a log-correction
similar to that of scoredist (Sonnhammer and Hollich, 2005). We scaled the
BLOSUM45 similarity matrix into a dissimilarity matrix such that the average
dissimilarity between each amino acid and a random amino acid is 1 if we use the
non-uniform amino acid frequencies of biological sequences. Before correcting
for multiple substitutions, the distance between two sequences is the average
dissimilarity among non-gap positions. To correct for multiple substitutions,
FastTree uses the formula d = −1.3 log(1 − du), where du is the uncorrected
distance. As in scoredist, FastTree truncates distances to values no greater than
3.0, and for sequences that do not overlap because of gaps, FastTree uses this
maximum distance. In the Results, we will show that FastTree’s log-corrected
distances lead to the same quality of trees as maximum-likelihood distances from
protdist (http://evolution.genetics.washington.edu/phylip.htm), but protdist is
1,000 times slower.

In preliminary testing, correcting for multiple substitutions decreased the ac-
curacy of the initial neighbor-joining phase of FastTree (data not shown). This
might be because of the average-of-logs approximation described in the next
section. Neighbor-joining requires averaging over distances that vary widely,
so that the approximation performs poorly. In contrast, during the nearest-
neighbor interchanges, FastTree only averages distances between adjacent nodes
in the tree. In any case, FastTree corrects the distances during nearest-neighbor
interchanges and during local bootstrap but does not correct for multiple sub-
stitutions during the neighbor-joining phase.

Computing Average Distances with Profiles

The intuition behind using profiles is that the average of the distances between
the sequences in two subtrees A and B is the same as the distance between pro-
file(A) and profile(B), because profile(A) can be thought of as the average of the
sequences in A. We define the uncorrected distance between two profiles at posi-
tion l to be the weighted average over all pairs of characters of the dissimilarity
of those characters, weighted by the product of the frequencies of the charac-
ters in the two profiles, or Pl(A,B) =

∑
α

∑
β fAl(α)fBl(β)D(α, β), where f

represent frequencies and D the dissimilarity matrix. The uncorrected distance
between the two profiles is then P (A,B) =

∑
l wAlwBlPl(A,B)/(

∑
l wAlwBl),

where wAl is the proportion of non-gaps in the profile of A at position l. Naively,
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the distance between two profiles takes O(La2) time to compute, but this can
be reduced to O(La) time by using the eigen decomposition of the dissimilarity
matrix.

The profile distance is identical to the average distance if the distances are
not corrected for multiple substitutions and if the sequences do not contain gaps.
Of course, we do wish to correct for multiple substitutions, and in practice,
large alignments always contain gaps. In these cases, the profile-based average
becomes an approximation of the average distances used in traditional neighbor
joining. In the Results, we show that these approximations are effective.

First, consider the issue of correcting for multiple substitutions with the
formula d = −1.3 · log(1 − du). Neighbor-joining uses the average distances
(d(A,B) + d(A,C))/2, while FastTree uses the corrected profile distance −1.3 ·
log(1 − P (A,BC)) = −1.3 · log(1 − (du(A,B) + du(A,C))/2). This is a good
approximation if the distances are under 0.4 (short branches) or if the distances
are near each other (“clock-like” evolution). For example, if du(A,B) = 0.2 and
du(A,C) = 0.3 then the two formulas give average distances of 0.377 and 0.374,
respectively. FastTree actually uses weighted joins, so that the long branch
will contribute less to the average, which also makes the approximation more
accurate. The same argument applies to Jukes-Cantor distances.

Second, consider what happens if the sequences contain gaps. FastTree
records the fraction of gaps at each profile position, and when computing dis-
tances, FastTree weights positions by their proportion of non-gaps. This seems
intuitively reasonable, and it is not clear if this is better or worse than aver-
aging the distances as in traditional neighbor joining. In both approaches, the
gaps are treated as missing data, but the weighting of the data is different. For
example, consider this alignment of three sequences and two positions with the
alphabet {0,1}:
1- (A)

00 (B)

11 (C)

so that d(A,C) = 0/1 and d(B,C) = 2/2. By the profile approach, the two
positions have weights 1 and 1/2, and P (AB,C) = (1 · 0.5 + 0.5 · 1)/(1 + 0.5) =
(0.5 + 0.5)/1.5 = 2/3 6= (d(A,C) + d(B,C))/2 = 1/2. As this example illus-
trates, traditional neighbor joining places more weight on the ungapped column
(in this case, the first column).

Neighbor Joining Using Profiles

Neighbor joining operates on distances between internal nodes rather than on
average distances between the members of subtrees. For example, if we do a
weighted join between two nodes A and B, as in BIONJ, then d(AB,C) =
λ(d(A,B) − d(A,AB)) + (1 − λ)(d(A,B) − d(B,AB)) (Gascuel, 1997). To
compute these distances between nodes, FastTree sets the profile of AB to
P (AB) = λP (A) + (1 − λ)P (B), and for any pair of nodes i and j, we write
d(i, j) = P (i, j) − u(i) − u(j), where P (i, j) is the profile distance and u(i) is
the “up-distance.” We set u(i) = 0 for leaves, and for joined nodes we set

6



u(ij) = λ(u(i) + d(i, ij)) + (1 − λ)(u(j) + d(j, ij)). It is easy to show that
this profile-based computation gives the exact same value of d(i, j) as BIONJ
after any number of joins, as long as distances are not corrected for multiple
substitutions and the sequences contain no gaps (Supplementary Note 1).

Another complication is that neighbor joining selects the best join by mini-
mizing the criterion d(i, j)− r(i)− r(j), where i, j, k are indices of active nodes
that have not yet been joined, d(i, j) is the distance between nodes i and j, n is
the number of active nodes and r(i) ≡ ∑

k 6=i d(i, k)/(n−2). r(i) can be thought
of as the average “out-distance” of i to other active nodes (although the denomi-
nator is n−2, not n−1). The out-distance for a node can be computed in O(La)
time if we store a “total profile” which is the average over all active nodes. A
derivation for the formula (n−2)r(i) = nP (i, T )−P (i, i)−(n−2)u(i)−

∑
j u(j),

where T is the total profile, is given in Supplementary Note 1. (P (i, i) equals
the average distance between children of i, and is usually above zero unless i
is a leaf.) We store the total up-distance

∑
j u(j) and update it after every

join, so this formula takes only O(La) time to evaluate. In the Supplementary
Note, we also present a more complicated formula that gives better results in
the presence of gaps.

At the start of neighbor joining, computing the total profile takes O(NLa)
time. After each join, FastTree updates the total profile in O(La) time by
subtracting the contribution of the children and adding the contribution of the
new node. FastTree also recomputes the total profile from scratch every 200 joins
to prevent roundoff errors from accumulating. This adds a total of O(N2La)
time, but the constant factor is very small.

To compute the weights for each join, we also need to compute the variance
of the distance between two joined nodes. Formulas and derivations to compute
these variances and to compute the weight for each join by using profiles are
given in Supplementary Note 1.

Heuristics for Selecting the Join

Traditional neighbor joining considers O(n2) possible joins to do at each step,
where n is the number of active nodes, and then selects the best join. Thus,
selecting all of the joins takes O(N3) time. Here we explain how FastTree re-
duces the number of joins considered at each step to less than O(n). FastTree
uses three heuristics. First, it remembers the best known join for each node, as
in FastNJ (Elias and Lagergren, 2005). Then, before accepting the best known
join, it does a local hill-climbing search to find a better join, as in relaxed
neighbor joining (Evans et al., 2006). Because the out-distances change after
every join, the best join for a node can change as well. Finally, FastTree uses
a “top-hits” heuristic which we explain below. Together, these three heuris-
tics reduce the total time for neighbor joining with profiles from O(N3La) to
O(N

√
N log(N)La). In the Results, we show that these heuristics do not reduce

the accuracy of the neighbor-joining phase of FastTree.
For each node, FastTree records a top-hits list of nodes that are the closest

neighbors of that node, according to the neighbor-joining criterion. We use
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lists of a fixed size m, and by default, m =
√

N . Before we begin joining, we
can approximate these lists for all N sequences by assuming that if A and B
have similar sequences or profiles, then the top-hits lists of A and B will largely
overlap. More precisely, we compute the 2m top hits of A, where the factor of
two is an arbitrary safety factor. Then, for each node B within the top m hits
of A that does not already have a top-hits list, we estimate the top-hits of B by
comparing B to the top 2m hits of A. This takes a total of O(N2L/m + NmL)
= O(N

√
NL) time to compute and O(Nm) = O(N

√
N) space to store.

During joining, we can compute the top-hits list for a new joined node from
the top-hits lists of its children in O(mLa) time by comparing the new node
to all of the nodes in the two top-hits lists. However, when we do a join, the
top-hit lists will gradually become shorter. For example, if we join nodes A and
B with identical top-hits lists, then the top-hit list of AB will be the same list
but without A or B, or one shorter. Similarly, if A is in the top-hit list of B, and
then we join A to C, then we replace A and C with AC when we next examine
the top-hit list of B, but the list will now be shorter. When the list becomes
too short (by default < 0.8 · m in length), or if we have done more than log2 m
joins since we updated the top-hit list of a node, then we “refresh” the top hit
list. This involves comparing the newly joined node AB to all other nodes and
also updating the top-hits lists of the top 2m hits of AB by comparing those
neighbors to all of the top m hits of AB. Each refresh takes O(nLa + m2La)
time and ensures that the top-hits lists of O(m) other nodes are of full length
and up-to-date, so these refreshes take a total of O(N

√
NLa) time.

Given these top-hits lists, we can find the best join in O(m log(N)La) time.
First, we find the best m joins among the best-hit entries for the n active
nodes, without recomputing the neighbor-joining criterion to reflect the current
out-distances. In principle, this can be implemented in O(m log N) time per
join by using a priority queue. (FastTree simply sorts the entries, which adds
O(N log N) time per join or O(N2 log N) time overall.) For those m candi-
dates, we compute the current value of the neighbor-joining criterion, which
takes O(mLa) time, and we select the best one. Then, we do a local hill-
climbing search using the best-hit lists: given a join AB, we consider all joins
AC or BD, where C is in top-hits(A) or D is in top-hits(B). In theory, this
takes O(log n) iterations (Evans et al., 2006), O(m log(n)La) time per join, or
O(N

√
N log NLa) time overall. In practice, because we already start with a

good join, hill-climbing rarely changes the join, even for alignments with 40,000
sequences (data not shown).

Restrictions on the Top-Hits Heuristic

To ensure accuracy, FastTree restricts the top-hits heuristic and only estimates
the top m hits of B from the top 2m hits of A if A and B are similar enough.
By default, FastTree requires that du(A,B) ≤ 0.75 · du(A,H2m), where H2m

is A’s 2m-th best hit, and the factor of 0.75 represents a compromise between
speed and accuracy. (Note that we are using uncorrected distances here, not
the neighbor-joining criterion.) If we used a factor of 0.5, then the top-hits list

8



would be guaranteed to include the top hit because of the triangle inequality
du(A,B) ≤ du(A,C)+du(C,B). On the other hand, for a perfectly balanced tree
with clock-like evolution, we expect the distance of hit m to be proportionate
to log2 m and the distance of hit 2m to proportionate to 1 + log2 m, so with a
factor of log2 m/(1 + log2 m) we would expect O(m) close neighbors of A.

Before it estimates the top-hits of B from the top-hits of A, FastTree also
requires that A and B have similar patterns of gaps. This is to avoid cases
where the sequences overlap in only a few positions, so that they might be
identical or nearly so (for the positions considered) even though they have very
different top-hits lists. Specifically, we require that the total number of non-gap
positions in the comparison between A and B must be at least 1−du/2 times the
number of non-gap positions in B or at least 1−2du/3 times the average shared
positions between A and its top 2m hits, where du is the maximum distance
allowed between A and B.

Because of these restrictions, it is not clear how many sequences will have
O(m) close neighbors, and it is not clear if the initial computation of top-hits
lists will truly take O(N

√
NL) time. In the Results, we show that FastTree

takes less time that computing the distance matrix, which suggests that this
does take less than O(N2L) time.

Nearest-neighbor Interchanges

After FastTree constructs an initial tree with neighbor joinining, it uses nearest-
neighbor interchanges to improve the tree topology. FastTree does the NNIs in
rounds. During each round, it tests and possibly rearranges each split in the
tree, and it recomputes the profile of each internal node. The profiles can change
even if the topology does not change because FastTree recomputes the weighting
of the joins. Finally, after the NNIs are complete, FastTree computes branch
lengths for the new topology.

According to the minimum evolution criterion, the topology ((A,B),(C,D))
preferable over alternate topologies ((A,C),(B,D)) or ((A,D),(B,C)) if d(A,B)+
d(C,D) < d(A,C) + d(B,D) and d(A,B) + d(C,D) < d(A,D) + d(B,C). For
larger topologies, we need to compute a profile for additional subtrees in order
to do this computation. For example, consider the topology ((A,(B,C)),D,E).
After neighbor-joining, we have profiles for the internal nodes BC and ABC as
well as for the leaves (these profiles are just sequences). To test the split ABC
versus DE, we need profiles for A, BC, D, and E, which we already have. To test
the split BC versus ADE, we need profiles for B, C, A, and DE. We compute the
profile for DE by doing a weighted join of D and E (see below). We store these
additional profiles along the path to the root and reuse them when possible.
(FastTree computes an unrooted tree but stores it as a rooted tree.) FastTree
uses a “post-order” traversal of the tree, in which children are always visited
before their parents, within each round. This ensures that we compute at most
O(N) additional profiles, that we store at most O(d) profiles, where d < N is
the depth of the tree, and that none of the additional profiles is needed after we
visit a node in the profile and potentially change its topology (which could lead
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to inconsistencies). Thus, a round of NNIs takes O(NLa) time and O(NLa)
additional space.

To compute the weighted join of A and B in a quartet ABCD, we use the
BIONJ weighting λ = 0.5+(d(B,C)+d(B,D)−d(A,C)−d(A,D))/(4 ·d(A,B))
and P (AB) = λA + (1 − λ)B.

By default, FastTree does log2(N) + 1 rounds of NNIs. We use a fixed
number of rounds, instead of iterating until no more NNIs occur, to ensure
convergence in a reasonable amount of time. The motivation for using roughly
log2(N) rounds is that, on a balanced topology, a misplaced leaf can migrate all
of the way across the tree.

Finally, once the topology is complete, FastTree recomputes lengths for
all branches using the formula d(AB,CD) = (d(A,C) + d(A,D) + d(B,C) +
d(B,D))/4−(d(A,B)+d(C,D))/2 for internal branches and d(A,BC) = (d(A,B)+
d(A,C) − d(B,C)/2 for branches leading to leaves.

Local Bootstrap

To estimate the support for each split, FastTree examines the same four profiles
and uses the same minimum evolution criterion as for the nearest-neighbor inter-
changes. FastTree resamples the columns using Knuth’s 2002 random number
generator (http://www-cs-faculty.stanford.edu/˜knuth/programs/rng.c).

Unique sequences

Large alignments often contain many sequences that are exactly identical to
each other (Howe et al., 2002). FastTree uses hashing to quickly identify re-
dundant sequences, constructs a tree for the unique subset of sequences, and
then creates multifurcating nodes, without support values, as parents of the
redundant sequences.

Testing FastTree

Sources of Alignments

We tested FastTree on both genuine alignments and simulated alignments. We
obtained sequences of members of COG gene families (Tatusov et al., 2001)
and members of Pfam PF00005 (Finn et al., 2006) from the fall 2007 release
of the MicrobesOnline database (http://www.microbesonline.org/). We aligned
the sequences to the family’s profile, using reverse position-specific blast for the
COG alignment (Schaffer et al., 2001) and hmmalign for the PF00005 align-
ment (http://hmmer.janelia.org/). As the profiles only include positions that
are present in many members of the family, these alignments do not contain all
positions from the original sequences. The 16S rRNA alignment is from green-
genes and is trimmed according to the greengenes mask (DeSantis et al. (2006);
http://greengenes.lbl.gov)

To simulate alignments with realistic phylogenies, we used 310 full-length
protein families from the COG database with at least 1,000 distinct sequences
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in MicrobesOnline. Given an actual family and alignment, we removed duplicate
sequences, we selected the desired number of family members at random, and
we removed alignment positions that were over 25% gaps. For alignments of up
to 1,250 sequences, we inferred a maximum-likelihood phylogeny using PhyML
3.0 with the JTT model and no rate variation across sites (Guindon and Gas-
cuel, 2003). Given the topology, we inferred the evolutionary rate of each site
using proml from the phylip package, gamma-distributed rates (8 categories),
and a coefficient of variation of 1 (http://evolution.genetics.washington.edu/
phylip.htm). The inferred rate categories were biased downwards (the average
rate was less than one), so we normalized the rates so that their average was
1. We then used the branch lengths (from proml) and the evolutionary rate
of each site to simulate an ungapped alignment with Rose (Stoye et al., 1998).
Finally, we re-introduced the gaps that were in the genuine alignment so that
the simulated alignment had the same pattern of gaps. Thus, both the topology
and the placement of gaps should be realistic.

For simulations of 5,000 sequences, the above approach was not computa-
tionally feasible. Instead, we inferred the topology and branch lengths using
FastTree and we assigned the evolutionary rate of each site randomly among
16 categories. These categories approximated a gamma distribution with a co-
efficient of variation of 0.7. For comparison, the coefficient of variation of the
inferred rates for the genuine alignments of 10-250 sequences was typically 0.6-
0.8. Also, before selecting sequences from the genuine alignment, we made a 99%
non-redundant subset of sequences with CD-HIT (Li et al., 2002). This avoided
inferring a tree with many very-short branch lengths and hence simulating large
numbers of non-unique sequences

For N = 10, we simulated 3,100 alignments (10 independent runs per fam-
ily); for N = 50, we simulated 3,099 alignments; for N = 250, we simulated 308
alignments; for N = 1, 250, we simulated only 92 alignments because of compu-
tational restrictions for inferring a realistic topology for the genuine alignment;
and for N = 5, 000, we simulated 7 alignments, as only 7 families contained
enough non-redundant sequences.

Software Tools

To compare the performance of FastTree to other methods, we used a vari-
ety of tools. We tested FastTree 1.0.0, a C implementation of BIONJ (http://
www.lirmm.fr/˜w3ifa/MAAS/BIONJ/BIONJ.c), QuickTree 1.1, Clearcut 1.0.8,
RapidNJ 1.0.0 (Simonsen et al. (2008); http://birc.au.dk/Software/RapidNJ/),
FastME 1.1, PhyML 3.0, RAxML VI version 1.0 (Stamatakis, 2006), and prot-
dist and seqboot from version 3.65 of the phylip package. We also tried to run
quick-join 1.0.10 (Mailund et al., 2006) on COG2814, but it crashed after us-
ing 4 GB of memory. Similarly, the only available implementation of scoredist,
from the Belvu alignment viewer, required too much memory. Executables were
obtained from the authors’ web sites or were compiled with gcc version 3.4.6
and the -O2 optimization setting. When using protdist to estimate maximum
likelihood distances, we replaced negative distances (from non-overlapping se-
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quences) and distances above 3 substitutions per site with 3, as in scoredist.
This improved the likelihood of the trees inferred by BIONJ from protdist dis-
tances (data not shown).

For most timings, we used a computer with 2 dual-core 2.6 GHz AMD
Opteron processors and 32 GB of RAM. For two long-running jobs to infer
a maximum-likelihood topology for an alignment with around 10,000 sequences,
we used a different computer with a 2.4 GHz Intel Q6600 quad-core processor
and 8 GB of RAM. The two machines have similar performance (about 20%
different for FastTree). All programs used a single thread of execution.

The time to compute a distance matrix for log-corrected distances was mea-
sured by running FastTree with the -makematrix option, so that it computes
distances between all pairs of sequences. It compares all N2 pairs of sequences
rather than the N(N − 1)/2 unique pairs in order to save memory.

To estimate the performance of the distance matrix methods on the larger
families, we extrapolated from the largest feasible problem and we used the scal-
ing behavior of each algorithm. We assumed that BIONJ scales as O(N3) time
and O(N2) space, that Clearcut scales as O(N2 log N) time and O(N2) space,
that RapidNJ scales as O(N2) time and O(N2) space, and that protdist scales
as O(N2L) time. The scaling of QuickTree is cubic in time and quadratic in
space, but we scaled by the number of distinct sequences, as QuickTree includes
an optimization to remove redundant sequences (as does FastTree).

To compare the FastTree’s local bootstrap to the traditional bootstrap, we
used phylip’s seqboot to generate resampled alignments and we ran FastTree on
each resampled alignment. We recorded how often each split from the tree that
FastTree inferred with the full data appeared in the resampled trees.

Results

Topological Accuracy in Simulations

We tested FastTree and other methods for inferring phylogenies on simulated
protein alignments with 10, 50, 250, 1,250, and 5,000 sequences. The simulated
alignments were derived from genuine alignments of large gene families (from
COG, Tatusov et al. (2001)) by inferring a phylogeny, simulating sequences with
that phylogeny (Stoye et al., 1998), and placing gaps in the simulated sequences
in the same pattern that they appear in the genuine sequences. Although po-
sitions with gaps and other ambiguously aligned positions are usually removed
before computing a phylogeny, for large alignments, this is impossible, because
few or no positions will remain after trimming. Thus, we removed positions that
were >25% gaps but we did not try to remove all of the gaps. For alignments
of up to 1,250 sequences, we also estimated the evolutionary rate of each site in
the genuine alignment, and we used these rates in the simulations (see Methods
for details). The simulated alignments ranged from 64-1,009 positions (median
304). On average, the sequences in the simulated alignments were 33% identical,
and 9% of positions were gaps.
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For each alignment and for each method, we counted the proportion of splits
that were correctly inferred. As shown in Table 1, FastTree was significantly
more accurate than other distance matrix methods but was 1-2% less accurate
than PhyML, a maximum likelihood method (Guindon and Gascuel, 2003). The
next best method was FastME, which like FastTree uses nearest-neighbor inter-
changes according to the minimum evolution criterion to improve the topology
(Desper and Gascuel, 2002). For 10 or 50 sequences, FastTree was about 1%
more accurate than FastME, but in larger simulations, the accuracy of FastME
and FastTree was not significantly different (P > 0.01, paired t test). FastTree
was significantly more accurate than BIONJ, a weighted variant of neighbor
joining (Gascuel, 1997), with either log-corrected distances (as in FastTree) or
maximum likelihood distances from protdist. For 10 or 50 sequences, the differ-
ence in accuracy was slight, but for 250 to 5,000 sequences, FastTree was 2-4%
more accurate. BIONJ with maximum-likelihood distances that were estimated
using a model with gamma-distributed rates (again using protdist) gave poor
results. BIONJ with maximum-likelihood distances that were estimated with a
single rate category had about the same accuracy as BIONJ with log-corrected
distances, which shows that FastTree’s method for estimating distances is ad-
equate. FastTree was 1-5% more accurate than QuickTree, an implementation
of traditional neighbor joining (Howe et al., 2002). Finally, FastTree was 4-
6% more accurate that Clearcut, an implementation of relaxed neighbor joining
(Evans et al., 2006) that is more scalable than the other distance matrix methods
(see below).

It is not clear if these differences in accuracy are significant in practice.
Most of the erroneous splits found by FastTree have poor support (see below).
Conversely, we suspected that most splits missed by FastTree but found by
PhyML have poor support. Indeed, it has previously been reported that maxi-
mum likelihood methods are more accurate than neighbor joining, but most of
those additional correct splits have poor support (Nei et al., 1998). To identify
strongly supported splits, we used PhyML 3.0’s approximate likelihood ratio
test (aLRT) with the minimum of SH-like and χ2 supports (Anisimova and
Gascuel, 2006). We considered splits with support values of 90% or higher to be
strongly supported. In the simulations with 10 sequences, only 10% of the splits
that FastTree missed but PhyML found were strongly supported. In contrast,
64% of splits that were correctly identified by both PhyML and FastTree were
strongly supported. Similarly, in simulations with 50 sequences, only 23% of
the splits that FastTree missed but PhyML found were strongly supported, but
79% of splits that were correctly identified by both methods were strongly sup-
ported. Thus, most of the additional correct splits found by PhyML are poorly
supported and might not be used to draw biological conclusions.

Effectiveness of FastTree’s Approximations and Heuristics

We also used the simulations to test whether the FastTree’s approximations
and heuristics were effective. First, FastTree uses a limited number of rounds of
nearest-neighbor interchanges (e.g., 10 rounds for 250 sequences and 13 rounds
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for 5,000 sequences). As shown in Table 2, increasing the number of rounds to
20 (“extra NNI”) had no effect on accuracy. Second, FastTree uses heuristics
to speed up the neighbor-joining phase. The accuracy of the neighbor-joining
phase was virtually unchanged by these heuristics (compare “no NNI” to “ex-
haustive”). In any case, the NNIs should correct any errors that are due to
the heuristics. Heuristic search was also over 100 times faster: for example, for
an alignment of 1,250 proteins with 338 positions, the neighbor joining phase
of FastTree took 1,551 seconds with exhaustive search but only 8 seconds with
heuristic search. Third, in the absence of gaps, FastTree’s neighbor-joining
phase should give the same results as BIONJ with uncorrected FastTree dis-
tances. In ungapped simulations, this was indeed the case (Supplementary
Table 1). With gaps, FastTree uses an approximation. However, BIONJ with
uncorrected distances was no more accurate than FastTree’s neighbor-joining
phase, which shows that FastTree’s approximation is effective.

The loss of accuracy due to using uncorrected distances during the neighor-
joining phase was modest. In the simulations, BIONJ with corrected distances
was about 2% more accurate than BIONJ with uncorrected distances. This is
consistent with a previous simulation study of realistic topologies and protein
alignments (Hollich et al., 2005). Because the number of errors due to uncor-
rected distances is small, it is not suprising that FastTree can correct these
errors by doing a few rounds of NNIs.

After doing nearest-neighbor interchanges, it made little difference if the
joins were weighted, as in the default settings of FastTree, or not (see “balanced
joins” in Table 2). This was surprising to us because weighting the joins did
improve the accuracy of the neighbor joining methods (compare QuickTree and
BIONJ with log-corrected distances in Table 1). Again, the NNIs probably
make up for any deficiencies in the initial neighbor-joining tree.

Finally, we wondered how the presence of gaps in the alignments was af-
fecting our results. For the simulated families with 10-1,250 sequences, we ran
FastTree and other methods on the ungapped simulated alignments (i.e., before
introducing the gaps). We found similar results as in the gapped simulations:
FastTree was slightly more accurate than BIONJ for large alignments and was
slightly more accurate than FastME for small aligments (Supplementary Ta-
ble 1). Thus, the slightly higher accuracy of FastTree as compared to other
minimum-evolution methods was not due to the presence of gaps in our simu-
lations.

Quality of FastTree’s Support Values

To compare FastTree’s local bootstrap to the traditional bootstrap, we used the
simulations with 250 sequences, and we ran the traditional bootstrap with Fast-
Tree as the underlying method for inferring trees. For both kinds of bootstrap,
we used 1,000 replicates. As shown in Figure 2, both methods were effective in
identifying correct splits. For example, if we define strongly supported as hav-
ing a local bootstrap of 95% of above, then 64% of correct splits were strongly
supported, and 97% of the strongly-supported splits were correct.
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To quantify how effective the measures were in distinguishing correct splits,
we used the area under the receiver operating characteristic curve (AOC, De-
Long and Clarke-Pearson (1998)). The AOC is the probability that a true split
will have a higher support value than an incorrect split, so a perfect predictor
has AOC=1 and a random predictor has AOC=1/2. The traditional bootstrap
had an AOC of 0.933, versus 0.870 for the local bootstrap. Although the local
bootstrap is not quite as effective as the global bootstrap, we argue that it is
adequate, and it is orders of magnitude faster (see below).

Quality of Trees for Genuine Protein Families

To test the quality of FastTree’s results on genuine protein families, we inferred
topologies for alignments of 500 randomly selected sequences from large COGs.
These alignments ranged from 65 to 1,009 positions, and within each alignment,
the average pair of sequences were 27% identical. To quantify the quality of each
topology, we used PhyML to optimize the branch lengths and compute the log-
likelihood. We ran PhyML with the JTT model of amino acid substitution and
four categories of gamma-distributed rates.

In Table 3, we report the averiage difference in log-likelihood between that
method’s trees and FastTree’s trees. The methods are sorted by the average
difference. All of the other methods tested gave significantly worse average
likelihoods than FastTree (paired t test, all P < 10−20). FastTree’s average
log-likelihood was 165 higher than for the next-best method, FastME, and Fast-
Tree’s topology had a higher likelihood than FastME’s for 262 out of the 310
trees. FastTree also outperformed BIONJ (with several different distance met-
rics), Clearcut, and traditional neighbor-joining as implemented in QuickTree.
Furthermore, as in the simulations, FastTree’s approximations and heuristics
did not reduce the quality of the trees (Supplementary Table 2).

Computational Performance

To test FastTree’s speed and memory requirements, we ran FastTree and other
methods on a protein alignment from the COG database (COG2814), a domain
alignment from PFam (PF00005), and a trimmed alignment of full-length 16S
rRNAs (Tatusov et al. (2001); Finn et al. (2006); http://greengenes.lbl.gov).
These alignments contain 8,362, 39,092, and 158,022 distinct sequences, respec-
tively. More statistics on these alignments are given in Table 4, and the CPU
time and memory usage of various methods are given in Table 5. Given the
running times for the smallest alignment (COG2814), most of the methods will
not scale to larger alignments. So, we extrapolated the CPU times and mem-
ory usages to the larger alignments by using the theoretical complexity of each
method (see Methods for details).

The maximum-likelihood methods we tested, PhyML (Guindon and Gascuel,
2003) and RAxML (Stamatakis, 2006), did not complete in 50 days on the small-
est of these problems, which took FastTree about 3 minutes. (Despite the high
usage of virtual memory by PhyML, both PhyML and RAxML ran at over 99%
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CPU utilization.) Indeed, PhyML 3 with a single rate category typically takes
over a week to complete on genuine alignments of just 1,250 protein sequences
(data not shown). Thus, current implementations of the maximum-likelihood
approach to inferring topologies do not scale.

The other methods that we tested require a distance matrix as input, so
we also compared the time to compute a distance matrix to the time for Fast-
Tree. As shown in Table 5, FastTree is over 1,000 times faster than computing
maximum-likelihood protein distances, and for the 16S rRNA alignment, Fast-
Tree is faster than computing Jukes-Cantor distances.

If estimates of the tree’s reliability is required, then even for the smallest of
these alignments, FastTree is 1,000 times faster than traditional neighbor join-
ing (QuickTree) with 100 bootstraps and the simplest possible distance measure
(%different). Although we expected QuickTree with bootstrap to be 100 times
slower than QuickTree without bootstrap, it is actually almost 300 times slower,
and requires several times more memory as well. We believe that this is because
QuickTree’s algorithm for comparing the bootstrapped trees to each other re-
quires O(N3) time and O(N2) space. Other popular tools for comparing tree
topologies, such as treedist and consense from the phylip package, also appear
to require O(N3) time (data not shown). In principle, tree comparison can be
implemented in O(N2) time and O(N) space by hashing the splits in the trees.

For the 16S alignment, the only method other than FastTree that seems
practical is Clearcut: all of the other methods would require over 1,000 hours or
over 500 gigabytes of memory. Clearcut itself is very fast – we estimate that it
might take only 12 hours to infer a tree from the 16S distance matrix. However,
Clearcut requires a distance matrix, and FastTree is faster than clearcut once the
cost of computing the distance matrix is included. Clearcut would also require
over 50 gigabytes of memory – 20 times as much as FastTree – which makes it
impractical for us to run. Unlike FastTree, Clearcut does not produce support
values – producing those would take at least 100 times longer, or over half a year.
Furthermore, Clearcut seems to be less accurate than FastTree (Tables 1 & 2).
Overall, we found that FastTree scales to the largest sequence families, while the
maximum-likelihood methods are far too slow, and the distance-matrix methods
have prohibitive CPU and memory requirements.

Discussion

Scaling to a Million Sequences

As we have shown, FastTree computes trees for the largest existing alignments,
with on the order of 100,000 sequences, in under a day. However, given the rapid
rate of DNA sequencing, we expect that alignments with 1,000,000 sequences
will soon exist. For such large alignments, the major memory requirement will
be the top-hits lists, which take O(N

√
N) space. For 1 million sequences, this

will be about 20 gigabytes (109 entries at 20 bytes per entry), which we hope
will be acceptable. In contrast, the distance matrix for a million sequences
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would take 2 terabytes of memory. FastTree’s running time should scale by
between O(N log N

√
N) and O(N2), so a million sequences would take 20-40

times longer than the large 16S rRNA alignment, or 2-4 weeks, which is a bit
slow. Further improvements in performance might be achievable by tuning the
top-hits heuristic to be more aggressive and relying on the nearest-neighbor
interchanges to correct any errors that result.

Large Alignments

In this work, we rely on profile-based multiple sequence alignment as the most
practical method for the largest families. However, profile-based alignment is be-
lieved to be less accurate than progressive alignment. Thus, whenever possible,
biological inferences from these large trees should be confirmed with higher-
quality alignments. For example, our web site includes interactive tools for
browsing large trees, for selecting relevant sequences, and for building progres-
sive alignments and trees with those sequences (http://www.microbesonline.org/).

One of the limiting steps in progressive alignment is the construction of the
guide tree. The top-hit heuristic might be useful for this step. For example,
PartTree (Katoh and Toh, 2007) uses a divide-and-conquer algorithm and k-mer
distances to compute a (lower accuracy) guide tree on unaligned sequences in
O(N log(N)L) time. This tree could be used to generate an initial alignment,
and FastTree could be used to generate the guide tree for another iteration
of progressive alignment. A faster UPGMA variant of FastTree is available at
http://www.microbesonline.org/fasttree and might be useful for this purpose,
both because of its speed and because UPGMA guide trees may lead to better
alignments (Edgar, 2004).

In principle this approach could lead to accurate progressive alignments in
less than O(N2L) time. However, the number of gaps in an alignment grows with
the number of sequences, because of independent insertions in the subfamilies.
To achieve progressive alignment in less than O(N2L′) time, where L′ is the
length of the longest input sequence, would require masking out subfamily-
specific insertion positions while analyzing the other parts of the tree.

Conclusion

FastTree makes it practical to infer accurate phylogenies, including support
values, for families with tens or hundreds of thousands of sequences. These
phylogenies should be useful for reconstructing the tree of life and for pre-
dicting functions for the millions of uncharacterized proteins that are being
identified by large-scale DNA sequencing. FastTree reduces memory require-
ments by storing profiles of internal nodes instead of a distance matrix and
reduces CPU time by using heuristic search during the neighbor joining phase.
FastTree then uses nearest-neighbor interchanges to refine the topology, which
increases its accuracy slightly above that of other minimum-evolution meth-
ods. Finally, FastTree quickly estimates the reliability of internal nodes in the
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tree by using the local bootstrap. FastTree executables and source code are
available at http://www.microbesonline.org/fasttree; FastTree trees for every
prokaryotic gene family will be available in the next release of the MicrobesOn-
line tree-browser (http://www.microbesonline.org/); and a FastTree tree for all
sequenced full-length 16S ribosomal RNAs will be available in the next release
of greengenes (http://greengenes.lbl.gov).
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Figures

Figure 1 - Overview of FastTree.
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Figure 2 - Distribution of support values for simulated

alignments of 250 protein sequences with gaps.

We compare the distribution of FastTree’s local bootstrap and the traditional
(global) bootstrap for correctly and incorrectly inferred splits. The right-most
bin contains the strongly supported splits (0.95-1.0).
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Tables

Table 1 - Topological accuracy of tree-building methods on

simulated protein alignments with gaps.

Topological Accuracy

Method Model N=10 N=50 N=250 N=1,250 N=5,000

PhyML JTT 0.744+ 0.771+ 0.817+ – –

FastTree log-corrected 0.7240 0.7630 0.7970 0.7780 0.7800

FastME log-corrected 0.716− 0.754− 0.7960 0.7770 0.7700

BIONJ log-corrected 0.7250 0.754− 0.766− 0.730− 0.741−

BIONJ JTT 0.701− 0.758− 0.777− 0.737− 0.741−

BIONJ JTT+Γ 0.567− 0.625− 0.737− 0.697− –

QuickTree log-corrected 0.716− 0.746− 0.760− 0.726− –

QuickTree %different 0.673− 0.678− 0.699− 0.672− –

Clearcut log-corrected 0.682− 0.733− 0.755− 0.723− 0.731−

+ Significantly more accurate than FastTree (P < 0.001, paired t test)
0 Not significantly different from FastTree (P > 0.01, paired t test)
− Significantly less accurate than FastTree (P < 0.001, paired t test)

Table 2 - The topological accuracy of variants of FastTree

on simulated protein alignments with gaps.

Topological Accuracy

Method N=250 N=1,250 N=5,000

Default settings 0.797 0.778 0.780

Extra NNI 0.797 0.778 0.780

Balanced joins 0.797 0.778 0.777

No NNI 0.734 0.702 0.724

Exhaustive, no NNI 0.733 0.701 –

BIONJ, uncorrected dist. 0.731 0.699 0.722

Table 3 - The relative log-likelihoods of topologies inferred

for 310 genuine protein alignments of 500 sequences each.

Average % Worse than

Method Model Log-Lik. FastTree

FastTree log-corrected 0.0 –

FastME log-corrected -165.2 86%

BIONJ JTT -404.3 95%

BIONJ log-corrected -426.1 >99%

QuickTree log-corrected -495.3 >99%

Clearcut log-corrected -532.2 99%

QuickTree %different -667.0 100%

BIONJ JTT + Γ -1576.1 99%
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Table 4 - Genuine alignments for performance testing.

Alignment COG2814 PF00005 16S rRNA

Type protein protein nucleotide

#Sequences 10,610 52,927 167,547

#Distinct 8,362 39,092 158,022

#Columns 394 214 1,287

%Gaps 10.8% 15.2% 4.3%

Table 5 - CPU time and memory usage for computing dis-

tances and inferring trees for genuine alignments.

COG2814 PF00005 16S rRNA

Program Support hours GB hours GB hours GB

FastTree none 0.06 0.16 0.52 0.3 16.3 2.4

FastTree local (1,000) 0.08 0.16 0.56 0.3 17.3 2.4

Log-corrected Distancesa 0.05 0.13 0.71 2.8 49.9 46.5

Max-lik. Distancesb 138 0.72 > 103 – – –

Clearcutc none 0.06 0.22 1.44 5.2 ≈ 37.0 ≈ 52

RapidNJc none 0.05 2.2 ≈ 0.9 ≈ 55 ≈ 30.1 ≈ 549

FastMEc none 0.52 4.2 ≈ 12.5 ≈ 105 ≈ 147 ≈ 103

QuickTreec none 0.24 0.16 22.7 2.9 ≈ 103
≈ 47

QuickTreed boot (100) 63.5 0.71 ≈ 104
≈ 15.5 ≈ 105

≈ 254

BIONJc none 32.9 0.44 ≈ 103
≈ 10.9 ≈ 105

≈ 110

PhyML 3e aLRT >1,000 9.5 – – – –

RAxML VIf none >1,000 0.70 – – – –
a The time to compute the distances between all N2 pairs of sequences in the
alignment, as implemented by the authors, and the space required to store the
N(N − 1)/2 distinct entries of the distance matrix.
b Computed using phylip’s protdist and default options (JTT model, no varia-
tion of rates across sites).
c These timings include half of the time to compute N2 log-corrected distances
because the method requires a distance matrix but each pair of sequences only
needs to be considered once.
d Using QuickTree’s built-in implementation of %different distances and of
global bootstrap.
e For best performance, we used no variation of rates across sites.
f For best performance, we used no variation of rates across sites and the fast
hill-climbing option (-f d). For an initial topology, we used the BIONJ tree.
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Supplementary Table 1 - Topological accuracy of tree-building

methods on simulated protein alignments with 10, 50, 250,

or 1,250 sequences and no gaps.

Method Model N=10 N=50 N=250 N=1,250

PhyML JTT 0.768 0.797 0.837 0.827

FastTree log-corrected 0.752 0.800 0.841 0.827

FastME log-corrected 0.742 0.796 0.839 0.828

BIONJ log-corrected 0.752 0.797 0.817 0.788

BIONJ JTT 0.714 0.794 0.831 0.799

BIONJ JTT + Γ 0.564 0.624 0.782 –

QuickTree log-corrected 0.746 0.788 0.810 0.781

QuickTree %different 0.692 0.708 0.726 0.703

Clearcut log-corrected 0.702 0.774 0.802 0.777

FastTree No NNI – – 0.765 0.740

FastTree Exhaustive, no NNI – – 0.764 0.738

BIONJ uncorrected – – 0.764 0.738

Supplementary Table 2 - Relative log-likelihoods of trees

inferred by variants of FastTree for genuine protein align-

ments of 500 sequences.

Average % Worse than

Method Log-Lik. FastTree

Default settings 0.0 –

Balanced joins -106.4 77%

No NNI -402.3 100%

Exhaustive, no NNI -428.5 100%

BIONJ, uncorrected dist. -514.1 >99%

Supplementary Note 1: Formulas and Deriva-

tions for Neighbor Joining with Profiles

Reduction Formulas

First we show that, for gap-free alignments and uncorrected distances, we can
compute the distances between internal nodes, according to the reduction for-
mula of neighbor-joining or BIONJ, from the profiles and the “up-distances”
u(i). We also give the formula for the up-distances.

When we join two nodes i and j, we store a profile or a frequency vector at
each position l for the new parent node ij as the (weighted) average

~Pl(ij) = λ~Pl(i) + (1 − λ)~Pl(j)

where λ is the weight (as in BIONJ) or λ = 1/2. Because the profile distances
P (i, j) are linear,

P (ij, k) = λP (i, k) + (1 − λ)P (j, k)
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Now, if we first consider unweighted joins, the reduction formula for neighbor
joining is

d(ij, k) =
d(i, k) + d(j, k) − d(i, j)

2

FastTree uses profiles and up-distances

d(ij, k) = P (ij, k) − u(ij) − u(k)

u(ij) ≡ P (i, j)

2

and u(l) ≡ 0 for leaves. For two leaves i and j, P (i, j) = d(i, j), so this gives the
correct distance between leaves. Assume the distances are correct for all nodes
so far and consider the next join ij:

d(ij, k) =
d(i, k) + d(j, k) − d(i, j)

2

=
P (i, k) − u(i) − u(k) + P (j, k) − u(j) − u(k) − P (i, j) + u(i) + u(j)

2

=
P (i, k) + P (j, k)

2
− P (i, j)

2
− u(k)

= P (ij, k) − u(ij) − u(k)

which shows that our distances are correct for d(ij, k) and, by induction, for all
nodes. For weighted joins, a similar argument shows that

u(ij) ≡ λ(u(i) + d(i, ij)) + (1 − λ)(u(j) + d(j, ij))

gives the same result as the distance reduction formula for BIONJ

d(ij, k) = λ(d(i, k) − d(i, ij)) + (1 − λ)(d(j, k) − d(j, ij))

For BIONJ, we also need to reduce the “variance” matrix. The variance
values for pairs of leaves are the same as the distance values, and the BIONJ
reduction formula for variances is

v(ij, k) = λv(i, k) + (1 − λ)v(j, k) − λ(1 − λ)v(i, j)

which can be computed from profile-distances by using a “variance correction”
ν(i) analogous to the up-distances, where ν(i) ≡ 0 for leaves and

v(i, j) = P (i, j) − ν(i) − ν(j)

ν(ij) ≡ λν(i) + (1 − λ)ν(j) + λ(1 − λ)v(i, j)
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Given these variances, BIONJ weights the join of i, j so as to minimize the
variance of the distance estimates for the new node ij, using the formula

λ =
1

2
+

∑

k 6=i,j

(v(j, k) − v(i, k))

2(n − 2)v(i, j)

∑

k 6=i,j

(v(j, k) − v(i, k)) =
∑

k 6=i,j

(P (j, k) − P (i, k) − ν(j) + ν(i) + ν(k) − ν(k))

= (n − 2)(ν(i) − ν(j)) +
∑

k 6=i,j

P (j, k) −
∑

k 6=i,j

P (i, k)

where n is the number of active nodes before the join takes place. FastTree
computes this in O(La) time by using the total profile to compute sums of
P (i, k), as will be explained below.

Out-distances

For either neighbor joining with unweighted joins or BIONJ, we need to compute
the out-distances r(i) so that we can compute the neighbor-joining criterion

d′(i, j) ≡ d(i, j) − r(i) − r(j)

r(i) ≡

∑

j 6=i

d(i, j)

n − 2

In the absence of gaps, the average profile distance between a node and all other
nodes can be inferred from the total profile T :

∑

j 6=i

d(i, j) =
∑

j 6=i

(P (i, j) − u(i) − u(j))

=
∑

j

P (i, j) − P (i, i) − (n − 1)u(i) −
∑

j 6=i

u(j)

= nP (i, T ) − P (i, i) − (n − 1)u(i) − (
∑

j

u(j) − u(i))

which can be computed in O(La) time if we store the total profile T and the
total of all the up-distances.
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Handling Gaps

Now, consider what happens if there are gaps. The distance between two profiles
becomes

P (i, j) ≡

L∑

l=1

D(~Pl(i), ~Pl(j))wl(i)wl(j)

L∑

l=1

wl(i)wl(j)

where wl(i) is the proportion of non-gaps for i at position l. The proportion of
non-gaps for an internal node is just the weighted average of the values for its
children. (The profiles’ frequency vectors do not include gaps.)

In the presence of gaps, the above formula for the out-distance is not a good
approximation because highly gapped sequences contribute little to the total
profile. Instead, we need to take the weights of the comparisons into account.
Let T − i be the total profile with the contribution from i removed. Then

∑

i6=j

P (i, j) ≈ (n − 1)P (i, T − i)

P (i, T − i) =

∑

j 6=i

L∑

l=1

Pl(i, j)wl(i)wl(j)

∑

j 6=i

L∑

l=1

wl(i)wl(j)

P (i, T ) =

∑

j

L∑

l=1

Pl(i, j)wl(i)wl(j)

∑

j

L∑

l=1

wl(i)wl(j)

which leads to a formula for P (i, T − i) in terms of P (i, T ) and P (i, i) and the
total weights of those comparisons. In practice, this gives a good approximation
for the out-distances in the presence of gaps (data not shown).

Gaps also complicate the interpretation of the “variances” used for weighted
joins. In principle, the variances should be divided by the number of non-gap
positions in the comparison, as distances that are computed from more positions
are more reliable. However, if we do that, the reduction formula for variances
given in the previous section becomes unreliable (data not shown). Instead,
we implicitly weight less-gapped sequences more highly because the less-gapped
member of a join contributes more strongly to the profile.
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To compute the weight for each join in the presence of gaps, we need to
estimate

∑
k 6=i,j P (i, k). To do this, split the profile-distance into its numerator

and its weight or denominator

P (i, j) =
N(i, j)

w(i, j)

Then

∑

k 6=i,j

P (i, k) ≈
∑

k 6=i,j

P (i, k)
(n − 2) · w(i, k)∑

k 6=i,j w(i, k)

=
(n − 2) · N(i, T − i − j)

w(i, T − i − j)

where T − i− j represents the total profile with i and j removed, and the terms
can be computed with

N(i, T − i − j) = n · N(i, T ) − N(i, i) − N(i, j)

w(i, T − i − j) = n · w(i, T ) − w(i, i) − w(i, j)
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